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We consider a simple diploid population-genetic model with potentially high variability of offspring numbers among individuals. Specifically, 
against a backdrop of Wright–Fisher reproduction and no selection, there is an additional probability that a big family occurs, meaning that a 
pair of individuals has a number of offspring on the order of the population size. We study how the pedigree of the population generated 
under this model affects the ancestral genetic process of a sample of size two at a single autosomal locus without recombination. Our popu
lation model is of the type for which multiple-merger coalescent processes have been described. We prove that the conditional distribution 
of the pairwise coalescence time given the random pedigree converges to a limit law as the population size tends to infinity. This limit law 
may or may not be the usual exponential distribution of the Kingman coalescent, depending on the frequency of big families. But because it 
includes the number and times of big families, it differs from the usual multiple-merger coalescent models. The usual multiple-merger co
alescent models are seen as describing the ancestral process marginal to, or averaging over, the pedigree. In the limiting ancestral process 
conditional on the pedigree, the intervals between big families can be modeled using the Kingman coalescent but each big family causes a 
discrete jump in the probability of coalescence. Analogous results should hold for larger samples and other population models. We illustrate 
these results with simulations and additional analysis, highlighting their implications for inference and understanding of multilocus data.
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Introduction
Population-genetic background
Population geneticists routinely make inferences about the past 
by applying statistical models to DNA sequences or other genetic 
data. Because past events have already occurred, these models 
describe what might have happened. They are necessary because 
patterns of variation in DNA provide only indirect evidence about 
the past. But the decisions made in building these statistical mod
els have important consequences for inference. A key question 
has received little attention: when and how should some parts 
of the past be treated as random variables, while others are 
viewed as fixed objects? Our particular concern here will be with 
the treatment of pedigrees, or the reproductive relationships 
among diploid individuals.

With limited exceptions the statistical models of population 
genetics have inherited the initial decisions which Fisher (1922, 
1930) and Wright (1931) made in deriving allele frequency spectra 
and probability density functions of allele frequencies at statio
narity. They modeled neutral alleles as well as those under selec
tion in a large well-mixed population which in the simplest case 
was assumed to be of constant size over time. Accordingly it has 
been common in population genetics to think of population sizes 
as fixed, not random. Today’s coalescent hidden Markov models, 
for example, infer a fixed trajectory of population sizes over 
time under the assumption of neutrality (Li and Durbin 2011; 
Sheehan et al. 2013; Wang et al. 2020; Schweiger and Durbin 2023).

Although coalescent models reflect later developments and 
were a significant shift in thinking for the field, fundamentally 
they depend on the same assumptions as the classical models of 
Fisher and Wright (Ewens 1990; Möhle 1999). This is clear even 
in the earliest treatments of ancestral genetic processes by 
Malécot (1941, 1946, 1948). What coalescent theory did was to 
broaden the scope of population genetics beyond forward-time 
models of changes in allele counts or frequencies to include 
gene genealogies constructed by series of common-ancestor 
events backward in time (Kingman 1982; Hudson 1983a, 1983b; 
Tajima 1983). Mathematically, the forward-time and backward- 
time models of population genetics are dual to each other 
(Möhle 1999).

Most importantly for our purposes here, Fisher (1922, 1930) and 
Wright (1931) obtained their predictions about genetic variation 

by averaging over an assumed random process of reproduction. 

The particular random process they used is now called the 

Wright–Fisher model (Ewens 2004). Because the outcome of the 

process of reproduction is a pedigree, their method is equivalent 

to averaging over the random pedigree of the population. That 

they did this without explanation in this context is somewhat 

curious given the attention to pedigrees in Fisher’s infinitesimal 

model of quantitative genetics (Fisher 1918; Barton et al. 2017) 

and in Wright’s method of path coefficients whose very purpose 

was to make predictions conditional on pedigrees (Wright 1921a, 

1921b, 1921c, 1921d, 1921e, 1922).
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The pedigree of the entire population is the set of reproductive 
relationships of all individuals for all time when reproduction is 
biparental. The corresponding graph is a genealogy in the usual 
sense. It has been referred to as an organismal pedigree (Ball 
et al. 1990) and the population pedigree (Wollenberg and Avise 
1998; Wakeley et al. 2012; Ralph 2019). Here we simply call it the 
pedigree. Patterns of genetic variation depend on the pedigree be
cause genetic inheritance happens within it. In particular, trans
mission of an autosomal genetic locus forward in time through 
the pedigree occurs by Mendel’s law of independent segregation. 
Multilocus transmission follows Mendel’s law of independent as
sortment or is mediated by recombination if the loci are linked. 
These processes, which may also be viewed backward in time, 
are conditional on the pedigree.

Within any pedigree, many possible uniparental paths can 
be traced backward in time from each individual. If there are 
two mating types, for example karyotypic females (F) and kar
yotypic males (M), then one such path might be depicted 
F→F→M→F→M→ · · · (Avise and Wollenberg 1997). For the ances
try of a single allele at an autosomal locus in a single individual, 
applying Mendel’s law of independent segregation backward in 
time generates these uniparental paths with equal probabilities 
1/2g for any path extending g generations into the past. When 
two such paths meet in the same individual, then with equal prob
ability, 1/2, the alleles either coalesce in that individual or remain 
distinct. Thus coalescence is conditional on the pedigree, and 
many possible gene genealogies are embedded in any one pedi
gree. Some loci, such as the mitochondrial genome and the Y 
chromosome in humans, are strictly uniparentally inherited. 
They follow only paths F→F→F→ · · · and M→M→M→ · · ·, re
spectively, and two such paths coalesce with probability one 
when they meet. For these loci, there is only one gene genealogy 
within the pedigree.

Under Wright–Fisher reproduction, parents are chosen at ran
dom uniformly from among all possible parents. This determines 
the structure of the pedigree in that generation. Assume that 
there are Nf karyotypic females and Nm karyotypic males in every 
generation. For autosomal loci, the familiar effective population 
size Ne = 4NfNm/(Nf +Nm) from classical forward-time analysis 
(Wright 1931) and its backward-time counterpart 1/(2Ne) for the 
pairwise coalescence probability (Möhle 1998a, 1998b) come 
from averaging over the possible outcomes of reproduction in a 
single generation. Sections 6.1 and 6.2 in Wakeley (2009) give a de
tailed illustration. For uniparentally inherited loci, this averaging 
yields 1/Nf and 1/Nm for the pairwise coalescence probabilities. In 
the diploid monoecious Wright–Fisher model or by setting 
Nf = Nm = N/2, these average probabilities of coalescence be
come 2/N for uniparentally inherited loci and 1/(2N) for auto
somal loci. For simplicity in this work, we will focus on the 
diploid monoecious Wright–Fisher model.

Averaging over pedigrees is what leads to the effective popula
tion size, Ne, being the primary determinant of forward-time and 
backward-time dynamics in neutral population genetic models. 
For very large populations, Ne becomes the only parameter of 
the Wright–Fisher diffusion (Ewens 2004) and the standard neu
tral or Kingman coalescent process (Sjödin et al. 2005). In particu
lar, Ne sets the timescale over which mutation acts to produce 
genetic variation. Such averaging removes the pedigree as a pos
sible latent variable which could be important for structuring gen
etic variation. As a result, from the perspective of the standard 
neutral coalescent, information about the (marginal) gene genea
logical process together with the mutation process is all we can 
hope to infer from genetic data (Sjödin et al. 2005).

The situation in which it makes the most sense to use this mar
ginal process of coalescence is when the only data available come 
from a single nonrecombining locus. In fact, the initial applica
tions of ancestral inference to single-locus data, namely to restric
tion fragment length polymorphisms in human mitochondrial 
DNA (mtDNA) (Brown 1980; Cann et al. 1987) then to sequences 
of the hypervariable control region (Vigilant et al. 1989, 1991; 
Ward et al. 1991; Di Rienzo and Wilson 1991), did not even use of 
the statistical machinery of population genetics. They instead 
took the gene genealogy and times to common ancestry to be 
fixed, and estimated them using traditional phylogenetic methods 
(Felsenstein 2004). But this in turn spurred the development of 
likelihood-based methods of ancestral inference using coalescent 
prior distributions for gene genealogies (Lundstrom et al. 1992; 
Griffiths and Tavaré 1994; Kuhner et al. 1995). We note that in 
the interim it has also become common to treat phylogenies as 
random variables using a wide variety of prior models (Ronquist 
et al. 2012; Suchard et al. 2018; Bouckaert et al. 2019).

The desirability of accounting for variation in gene genealogies 
became especially clear when the first sample DNA sequences of 
the human ZFY gene was obtained and was completely mono
morphic (Dorit et al. 1995). The mutation rate is lower on the Y 
chromosome than in the hypervariable region of mtDNA but it 
is not equal to zero (Brown et al. 1979; Wilson et al. 1985; Ingman 
et al. 2000; The 1000 Genomes Project Consortium 2015). Using co
alescent priors it was shown that the complete lack of variation in 
that first sample at ZFY was consistent with a wide range of times 
to common ancestry for the Y chromosome (Dorit et al. 1995; 
Donnelly et al. 1996; Fu and Li 1996; Weiss and von Haeseler 1996).

If instead data come from multiple loci, it is impossible to ig
nore variation in gene genealogies regardless of whether one 
thinks of the pedigree as fixed or random. Variation in gene ge
nealogies across the genome is, for example, what coalescent hid
den Markov models use to estimate trajectories of population 
sizes. The simplest illustrative case is when the loci are on differ
ent chromosomes or far enough apart on the same chromosome 
that they assort independently into gametes, and when within 
each locus there is no recombination. The gene genealogies of 
such loci will vary due to the particular outcomes of Mendelian 
segregation. They will also be independent due to Mendelian as
sortment, but only given the pedigree. Mendel’s law of independ
ent assortment is a law of conditional independence. It applies 
once relationships have been specified.

However, throughout much of the history of population genet
ics, it was assumed that independently assorting loci would have 
completely independent evolutionary histories. In coalescent the
ory, this means independent gene genealogies. As Charlesworth 
(2022) recently noted, Fisher (1922, 1930) and Wright (1931) in
tended their results on allele frequency spectra and probability 
density functions of allele frequencies at stationarity to be de
scriptions of the behavior of large numbers of independently as
sorting loci in the same genome. This is evident in their 
application of these distributions to the multiple Mendelian fac
tors of Fisher’s infinitesimal model (Fisher 1918) in their argu
ments about the Dominance Ratio (Fisher 1922; Charlesworth 
2022).

An early application to multilocus data was made by 
Cavalli-Sforza and Edwards (1967) and Felsenstein (1973) who de
veloped likelihood-based methods to infer trees of populations 
within species from multilocus allele-frequency data, specifically 
human blood group data, by modeling the forward-time process 
of random genetic drift independently at each locus conditional 
on the population tree. Felsenstein (1981) further developed and 
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applied these methods to gel electrophoretic data. Today’s meth
ods of inferring admixture from single nucleotide polymorphism 
(SNP) data using F-statistics are based on the same notion of inde
pendence (Patterson et al. 2012).

Like the population size itself, demographic features such as 
the splitting of populations have mostly been treated as fixed in 
population genetics. Cavalli-Sforza and Edwards (1967) and 
Felsenstein (1973) did discuss but did not implement prior models 
for trees of populations, specifically as outcomes of birth–death 
processes. More recently, Heled and Drummond (2009) did imple
ment this in a coalescent framework for multilocus sequence 
data, using the prior distribution of Gernhard (2008); see also 
Lambert and Stadler (2013). Yang (2002) and Rannala and Yang 
(2003) took a different approach, using gamma-distributed pseu
dopriors for times in trees.

Previous work on pedigrees
Although the underlying assumption that unlinked loci have com
pletely independent evolutionary histories is mistaken because it 
would require them having independent pedigrees, most theoret
ical work has followed the lead of Fisher (1922, 1930) and Wright 
(1931). Examples in which this is made explicit include Karlin 
and McGregor (1967), Kimura (1969), Ewens (1974), and Ewens 
and Maruyama (1975). Multiplying likelihoods across loci in appli
cations to genetic data subsequently became common practice 
(Watterson 1985; Padmadisastra 1988; Sawyer and Hartl 1992; 
Wakeley 1999; Nielsen 2000; Wooding and Rogers 2002; Adams 
and Hudson 2004). It is built into current inference packages, in
cluding ∂a∂i (Gutenkunst et al. 2009), momi2 (Kamm et al. 2020), 
and fastsimcoal2 (Excoffier et al. 2013, 2021).

As it happens, this conceptual mistake has almost no practical 
ramifications if the population is large and well mixed, and the 
variance of offspring numbers among individuals is not too large. 
Ball et al. (1990) were the first to address the question of gene ge
nealogies within pedigrees. They used simulations to show that 
the distribution of pairwise coalescence times among loci on a sin
gle pedigree do not differ substantially from their distributions 
among loci which have independent pedigrees. Their population 
model was similar to the Wright–Fisher model with population 
size N = 100: Poisson offspring numbers with strong density regu
lation to a carrying capacity of 100. Their results were based on si
mulations of 50 gene genealogies for each of 50 pedigrees and 
samples of size n = 100, in which a single gene copy was taken 
at random at each locus within each individual. They also showed 
that the distribution of coalescence times among pairs of indivi
duals on a single pedigree are very similar to the prediction ob
tained by averaging over pedigrees.

Wakeley et al. (2012) confirmed these results and related them 
to coalescent theory using simulations of 108 gene genealogies for 
n = 2 for each of 104 pedigrees and population sizes up to 105, to
gether with more limited treatments of larger samples n = 20 and 
100. Pedigrees were constructed in three different ways: assuming 
Wright–Fisher reproduction, using empirically derived human 
family structures, and under a model in which the outcome of a 
single generation of Wright–Fisher reproduction was repeated 
over time, resulting in a so-called cyclical pedigree. These simula
tions showed that times to common ancestry conditional on the 
pedigree conform well to the probability law underlying coales
cent theory, with a constant coalescence probability 1/(2Ne) =

1/(2N) each generation under the Wright–Fisher model with 
Nf = Nm = N/2, except for in the recent past where they differ 
greatly and depend on the pedigree. But they also showed that 
as long as N is large these idiosyncrasies in the short-time 

behavior of the ancestral process have little effect on the overall 
distribution of coalescence times given the pedigree, whether it 
is among independent loci in the same individuals or among inde
pendently sampled pairs of individuals.

Here “recent” means proportional to log2(N) generations, which 
is the timescale for the first occurrence of a common ancestor of 
all present-day individuals (Chang 1999) and for the complete 
overlap of all individuals’ ancestries in a well-mixed biparental 
population (Chang 1999; Derrida et al. 1999, 2000a, 2000b; Barton 
and Etheridge 2011; Coron and Le Jan 2022). This is much shorter 
than the N-generations timescale required for common ancestry 
of uniparental genetic lineages (Chang 1999; Donnelly et al. 
1999). Additional work on these properties of pedigrees include 
Rohde et al. (2004) and Lachance (2009) who showed that popula
tion structure and inbreeding do not strongly affect the time to the 
first occurrence of a common ancestor of all individuals. Blath 
et al. (2014) proved that the ancestries of the great majority of in
dividuals overlap even in cyclical pedigrees as N→∞. Matsen and 
Evans (2008) and Gravel and Steel (2015) showed that ancestral 
genetic lineages pass through only a small minority of the 
shared pedigree ancestors. See Agranat-Tamir et al. (2024) for 
further developments and an extension to admixed populations. 
Sainudiin et al. (2016) constructed a model with recombination 
which interpolates between uniparental common ancestry on 
the N-generations timescale and biparental common ancestry 
on the log2(N)-generations timescale.

Tyukin (2015) proved what was implied by the simulations of 
Ball et al. (1990) and Wakeley et al. (2012), specifically that when 
the population is large and well mixed the pedigree-averaged co
alescent process is a good substitute for the actual coalescent pro
cess conditional on the pedigree. Questions of this sort have a 
long history in mathematical physics and probability theory, where 
“quenched” and “annealed” are often used to refer to conditional as 
opposed to averaged processes. Molchanov (1994) and Bolthausen 
and Sznitman (2002b) provide background and developments in 
the classical context of random walks in random environments. 
What Tyukin (2015) proved is that the quenched coalescent process 
conditional on the pedigree converges to the pedigree-averaged 
standard neutral or Kingman coalescent process in the limit 
N→∞. Tyukin (2015) did this under a broader set of reproduction 
models with mating analogous to Wright–Fisher but with a gen
eral exchangeable distribution of offspring numbers (Cannings 
1974) in the domain of attraction of Kingman’s coalescent 
(Möhle and Sagitov 2001; Sagitov 2003).

Since time in the Kingman coalescent process is measured in 
units proportional to N generations, the result of Tyukin (2015)
provides insight into the role of the pedigree in the recent ancestry 
of the sample (O(log2(N)) generations) under the Cannings and 
Wright–Fisher models. Specifically, the chance of any events in 
the recent past which would dramatically alter the rate of coales
cence must be negligible as N→∞. Intuitively we might surmise 
that (1) individuals randomly sampled from a large well-mixed 
population are unlikely to be closely related, and barring coalescence 
for some small number of generations until their ancestries overlap 
does not affect the limit and (2) by the time their ancestries do over
lap in the pedigree, their numbers of ancestors are approaching the 
population size, making the chance of coalescence of order 1/N.

Two cases have been identified using simulations where 
quenched and annealed results are noticeably different. The first 
is population subdivision, especially with limited migration. 
Wollenberg and Avise (1998) showed that as the migration dis
tance decreases in a linear habitat, fewer independent loci are 
needed to accurately measure pairwise coefficients of coancestry 
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on the pedigree. Wilton et al. (2017) described increasingly strong 
pedigree effects as the migration rate decreased in a two- 
subpopulation model, specifically spikes in the distribution of 
pairwise coalescence times corresponding to the particular series 
of individual migration events that occurred in the ancestry. 
These results illustrate how even single gene genealogies may 
contain information about events in the ancestry of geographical
ly structured populations, via the pedigree. Thus, they are rele
vant for applications of ancestral inference to single-locus data, 
such as mtDNA, as well as to the broader field of intraspecific phy
logeography (Avise et al. 1987; Avise 1989, 2000). For recent empir
ical studies of spatiotemporally structured pedigrees and their 
effects on local patterns of genetic variation, see Aguillon et al. 
(2017) and Anderson-Trocmé et al. (2023).

The second situation in which pedigrees have a strong effect on 
coalescence times and gene genealogies is when there is a high 
variance of offspring numbers among individuals. This variance 
is comparatively low in the Wright–Fisher model, which has a 
multinomial distribution of offspring numbers (becoming 
Poisson as N→∞). In deriving the standard neutral coalescent 
process, Kingman (1982) started with the general exchangeable 
model of Cannings (1974) then assumed that the variance of off
spring numbers was finite as N→∞. Without this assumption, 
the ancestral limit process is not the Kingman coalescent process 
but rather a coalescent process with multiple mergers (see below). 
In addition, in this situation, simulations have shown that the 
pedigree has a marked effect on genetic ancestries.

Wakeley et al. (2016) simulated pedigrees in which a single indi
vidual had a very large number of offspring in some past generation 
and otherwise there was Wright–Fisher reproduction. This large re
production event greatly increased the probability of coalescence in 
the generation in which it occurred, causing a spike in the distribu
tion of pairwise coalescence times and altering the allele frequency 
spectrum. A strong selective sweep at one locus gave similar effects 
at unlinked loci via the pedigree (Wakeley et al. 2016). Similar devia
tions from standard neutral coalescent predictions are produced by 
cultural transmission of reproductive success (Guez et al. 2023).

Plan of the present work
Here, we present a new quenched limit result for coalescent pro
cesses in fixed pedigrees under a modified Wright–Fisher model 
which allows for large reproduction events. Wright–Fisher repro
duction on its own produces various kinds of large reproduction 
events but these are all extremely rare. Our model adds big fam
ilies with two parents and numbers of offspring proportional to 
the population size. These are inserted into the pedigree either 
on the same N-generations timescale as coalescent events in the 
Wright–Fisher background model or much faster so that they com
pletely dominate the ancestral process. In both cases, the limiting 
ancestral process conditional on the pedigree is different than the 
limiting ancestral process which averages over pedigrees. For sim
plicity, we focus on samples of size two. Consistent with the results 
of Tyukin (2015), our result reduces to the Kingman coalescent 
with n = 2 in the case where there are no big families.

Note that the corresponding averaged process is not the 
Kingman coalescent but rather a coalescent process with multiple 
mergers; see Tellier and Lemaire (2014) for an overview of these 
models in the context of population genetics. Multiple-merger co
alescent processes arise as N→∞ limits when the variance of off
spring numbers is large, and so may be applicable to a broad range 
of species with the capacity for high fecundity (Eldon 2020). They 
also arise from recurrent selective sweeps, when differences in 
offspring numbers are determined by individuals’ genotypes 

(Durrett and Schweinsberg 2004, 2005; Schweinsberg and 
Durrett 2005). Whereas the Kingman coalescent includes only 
binary mergers of ancestral genetic lineages, these more general 
processes allow mergers of any size. At issue here is how these 
models should be interpreted and applied.

By averaging over the process of reproduction, two kinds of 
multiple-merger coalescent processes have been described: 
Λ-coalescents which have asynchronous multiple mergers 
(Donnelly and Kurtz 1999; Pitman 1999; Sagitov 1999) and 
Ξ-coalescents which have simultaneous multiple mergers 
(Schweinsberg 2000; Möhle and Sagitov 2001; Sagitov 2003). 
Multiple-merger processes for diploid organisms are always 
Ξ-coalescents with the possibility of an even number simultan
eous mergers (Birkner et al. 2018). Our quenched limit result brings 
into question what seems like a natural extension from applica
tions of the standard neutral coalescent model, namely to assume 
that multiple-merger models may be applied independently to in
dependent loci as has been done both in theoretical explorations 
(Der and Plotkin 2014; Eldon et al. 2015; Spence et al. 2016; 
Matuszewski et al. 2018) and in analyses of SNP data (Birkner 
et al. 2013a; Blath et al. 2016; Árnason et al. 2023; Freund et al. 2023).

To establish the quenched limit process, we adapt the method 
that Birkner et al. (2013c) used for a quenched limit of a random 
walk in a random environment. See also the earlier work of 
Bolthausen and Sznitman (2002a). In this approach, the problem of 
convergence in distribution is addressed by analyzing a pair of 
conditionally independent processes, here corresponding to the 
ancestries of samples at two independently assorting loci on the 
pedigree. As Koskela (2018) has pointed out, positive correlations 
of coalescence times for pairs of unlinked loci are a hallmark of 
(pedigree-averaged) multiple-merger coalescent models. Our result 
frames this in terms of pedigrees, in which big families are the only 
elements that persist as N→∞. If a big family has occurred in a par
ticular generation, the probability of coalescence is greatly increased 
in that generation for all loci. All other aspects of the pedigree, that is 
to say the outcomes of ordinary Wright–Fisher reproduction, “aver
age out” such that the Kingman coalescent process describes the an
cestral process during the times between big families.

Theory and results
In this section, we present the population model considered in this 
paper, the mathematical statement of our main result and its proof. 
This result (Theorem 1) is stated as a convergence of the conditional 
distribution of the coalescence time of a pair of gene copies, given 
that we know the pedigree and which individuals were sampled. 
We assume that the pedigree is the outcome of a random process 
of reproduction, the population model described in the following 
section, and that the two individuals are sampled without replace
ment from the current generation. To connect with known results 
and highlight the effect of conditioning, we first state and prove 
the corresponding result (Lemma 1) for the unconditional distribu
tion of the coalescence time. This corresponds to fixing the sampled 
individuals and averaging over the pedigree. We close this section 
with simulations illustrating multilocus genetic ancestry and fur
ther analysis showing how nonzero correlations of coalescence 
times at unlinked loci result from averaging over the pedigree.

The population model
We consider a diploid, monoecious, biparental, panmictic popula
tion of constant fixed size N ∈ N with discrete, nonoverlapping gen
erations. Implicitly there is no selection, but we do not in fact model 
mutation or genetic variation, only the generation of the pedigree 
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and coalescence within it. There are two different types of reproduc
tion. With high probability, reproduction follows the diploid bipar
ental Wright–Fisher model. With small probability αN each 
generation, there is a highly reproductive pair whose offspring com
prise a proportion ψ ∈ [0, 1] of the population. Note that ψ is a fixed 
deterministic constant. More precisely, for each positive integer g, 
the reproductive dynamics between the parent generation g+ 1 
and the offspring generation g is given as follows:

1. With probability 1 − αN, each individual in the next gener
ation is formed by choosing two parents at random, uni
formly with replacement from the N adults of the current 
generation. Genetically, each offspring is produced ac
cording to Mendel’s laws which means each of the two 
gene copies in a parent is equally likely to be the one 
transmitted to the offspring. In this case, we call g a 
“Wright–Fisher generation.” An example of this standard 
reproduction dynamics between the parent generation 
g+ 1 and the offspring generation g is depicted below for 
a population of size N = 7.

2. With probability αN, a pair of adults is chosen uniformly with
out replacement to have a very large number of offspring, [ψN] 
where ψ ∈ [0, 1] is a fixed fraction of the population. The other 
N − [ψN] offspring are produced as above according to the 
Wright–Fisher model. In this case, we call g a “generation 
with a big family.” An example of this special reproduction dy
namics is depicted below for N = 7 and ψ = 0.72 in which the 
highly reproductive pair (I1, I2) = (4, 5) in generation g+ 1 
has [ψN] = [0.72 · 7] = 5 offspring in generation g.

These two possibilities happen independently for all genera
tions g ∈ Z≥0. The classical Wright–Fisher model corresponds 
to the case when αN = 0. In this case, every g ∈ Z≥0 is a Wright– 
Fisher generation. Note, we allow selfing with probability 1/N 
for all offspring produced by Wright–Fisher reproduction but 
we assume that the [ψN] offspring of big families have two dis
tinct parents.

The parent assignment between (parental) generation g+ 1 and 
(offspring) generation g is the collection of edges connecting the off
spring with their parents. The diagram in equation (1) below shows 
the parent assignment corresponding to the example above in which 
g is a Wright–Fisher generation. 

On the other hand, the diagram in equation (2) below shows the par
ent assignment corresponding to the example above in which g is a 
generation with a big family. 

Pedigree
The collection of all the parent assignments among all pairs of 
consecutive generations is called the pedigree and it is denoted 
as A(N). The pedigree models the set of all family relationships 
among the members of the population for all generations. The 
pedigree is shared among all loci. It is the structure through which 
genetic lineages are transmitted. Patterns of ancestry, or gene ge
nealogies are outcomes of Mendelian inheritance in this single 
shared pedigree.

Frequency of big families
Recall that αN denotes the probability of a big family to appear in a 
generation. We set

αN =
λ

Nθ , (3)

where θ ∈ (0, 1] and λ ∈ R≥0 is a fixed parameter which determines 

the relative frequency of big families on the timescale of Nθ 

generations.

Timescale
Suppose two individuals are sampled uniformly without replace
ment among the N individuals of the current generation g = 0 
and we sample one gene copy from each. Let τ(N,2) be the pairwise 
coalescence time, that is, the number of generations in the past 
until the two sampled gene copies coalesce. How long is the pair
wise coalescence time τ(N,2)? This will depend on N and also on θ 
owing to our assumption (3). In considering the limiting ancestral 
process for the sample, we rescale time so that it is measured in 
units of Nθ generations. We study the distribution of the rescaled 
pairwise coalescence time, τ(N,2)/Nθ, with different results depend
ing on whether θ ∈ (0, 1) or θ = 1. In the latter case, our timescale 
is N generations, which we note is 1/2 the usual coalescent time
scale for diploids. In the former case, where we may infer from 
equation (3) that big families will dominate the ancestral process, 
the timescale is accordingly much shorter than the usual coales
cent timescale. Coalescence times in both cases also depend on a 
combined parameter ψ2/4 which is the limiting probability of co
alescence when a big family occurs.

Limiting process by averaging over the pedigree
For reference and to illustrate our choice of timescale, we begin 
with a Kingman coalescent approximation for the pairwise coales
cence time in the classical Wright–Fisher model, here the special 
case θ = 1 and λ = 0 or αN = 0. Averaging over the process of repro
duction in a single generation gives a coalescence probability of 
1/(2N). With θ = 1, we measure time in units of N generations. 
To parallel the derivation of our main result, we consider the prob
ability that the coalescence time τ(N,2) is more than [tN] genera
tions. The limiting ancestral process is obtained as

P(N)(τ(N,2) > [tN]) = 1 −
1

2N

􏼒 􏼓[tN]

→ e− t/2 as N→∞. (4)

In words, the rescaled coalescence time τ
(N,2)

N converges in distribu

tion to an exponential random variable with rate parameter 1/2.
Before stating our main result, we first prove Lemma 1 below, 

generalizing (4) to our population model, in the sense that for 
θ = 1 with ψ = 0 or λ = 0 in Lemma 1 we recover (4).
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Lemma 1. Let λ ∈ R≥0, θ ∈ (0, 1], and set αN =
λ

Nθ. The rescaled coales
cence time τ(N,2)

Nθ converges in distribution to an exponential random vari
able with rate parameter

λ ψ2

4 , when θ ∈ (0, 1)
1
2+ λ ψ2

4 , when θ = 1.

􏼨

(5)

We note that in Birkner et al. (2013b), the full ancestral recom
bination graph (ARG) for samples of arbitrary size and genomes 
consisting of arbitrary numbers of linked loci is described for a 
population model nearly identical to ours here. The ancestral re
combination graph (Hudson 1983a; Griffiths and Marjoram 1997), 
like the Kingman coalescent itself, averages over the pedigree. 
Lemma 1 describes the marginal ancestral process for a sample 
of size two at a single locus.

Proof of Lemma 1
The lineage dynamics of our model can be analyzed using a 
Markov chain. In any generation g in the past, the ancestral 
lineages of a pair of gene copies must be in one of the three states 
{ξ0, ξ1, ξ2}, where 

ξ0 = (†)(†) represents two ancestral lineages in two distinct 
individuals,

ξ1 = (††) represents two ancestral lineages on different chro
mosomes in the same individual,

ξ2 = (†) represents that the ancestral lineages have coalesced.

The diploid ancestral process for a pair of gene copies can thus be 
represented as a Markov chain (Mg)g∈Z≥0 

with state space 
{ξ0, ξ1, ξ2}, where Mg is the state of the two lineages g generations 
in the past. Its one-step transition matrix ΠN is given by

ΠN :=(1 − αN)ΠWF
N + αNΠBF

N , (6)

where

ΠWF
N =

ξ0

ξ1

ξ2

ξ0 ξ1 ξ2

1 − 1
N

1
2N

1
2N

1 − 1
N

1
2N

1
2N

0 0 1

⎡

⎢
⎣

⎤

⎥
⎦ (7)

and

ΠBF
N =

ξ0

ξ1

ξ2

ξ0 ξ1 ξ2

1 − ψ2

2
ψ2

4
ψ2

4

1 0 0

0 0 1

⎡

⎢
⎣

⎤

⎥
⎦ + O

1
N

􏼒 􏼓
.

(8)

The matrix ΠWF
N in equation (7) is the transition matrix for a 

Wright–Fisher generation, whereas ΠBF
N in equation (8) is for a gen

eration with a big family. The entries of ΠBF
N in (8) are derived by 

conditioning on the parent assignment(s) for the individual(s) con
taining the ancestral lineages, with respect to the highly repro
ductive pair. For instance, for ancestral lineages currently in two 
distinct individuals, the coalescence probability is 1/4 if both indi
viduals are members of the big family and 1/(2N) otherwise. Thus, 
we have

P(Mg+1 = ξ2 |Mg = ξ0, BF) =
[ψN]([ψN] − 1)

N(N − 1)
1
4

+ 1 −
[ψN]([ψN] − 1)

N(N − 1)

􏼒 􏼓
1

2N
=

ψ2

4
+ O

1
N

􏼒 􏼓

for the transition ξ0 → ξ2 in ΠBF
N , and where we have also specified 

that this contribution to the overall probability in equation (6) is 
conditional on the occurrence of a big family.

The rest of the proof is a straightforward application of Möhle
(1998a, Lemma 1). This is a separation-of-timescales result. To 
see how it works, using equation (3) we can rewrite equation (6) as

ΠN :=A+
1

Nθ BN + O
1

Nθ+1

􏼒 􏼓

, (9)

where

A =
ξ0

ξ1

ξ2

ξ0 ξ1 ξ2

1 0 0

1 0 0

0 0 1

⎡

⎢
⎣

⎤

⎥
⎦ (10)

and

BN =
ξ0

ξ1

ξ2

ξ0 ξ1 ξ2

− Nθ

N − λ ψ2

2
Nθ

N
1
2+ λ ψ2

4
Nθ

N
1
2+ λ ψ2

4

− Nθ

N
Nθ

N
1
2

Nθ

N
1
2

0 0 1

⎡

⎢
⎣

⎤

⎥
⎦
.

(11)

The matrix A contains the fastest parts of the process. The matrix 
BN contains the next-fastest parts of the process, specifically those 

occurring on the timescale of Nθ generations.
Möhle’s result depends on the existence of equilibrium sto

chastic matrix P := limk→∞ Ak which in this case is equal to 
A. Möhle’s result also requires the existence of the limiting infini
tesimal generator G := limN→∞ PBNP. Note that in our application 
B := limN→∞ BN itself converges. From equation (11), it is clear 
that the limiting result will differ depending on whether θ ∈ 
(0, 1) or θ = 1. If θ ∈ (0, 1), the contribution of Wright–Fisher gen
erations to the coalescence rate shrinks to zero in the limit. If 
θ = 1, the contribution of Wright–Fisher generations, which is 
1/2 on our timescale, remains comparable to the contribution of 
generations with big families in the limit.

Applying Möhle (1998a, Lemma 1) to compute our probability of 
interest,

P(N)(τ(N,2) > [tNθ]) = (1, 0, 0)Π[tNθ]
N (1, 1, 0)T (12)

= (1, 0, 0) A+
1

Nθ BN + O
1

Nθ+1

􏼒 􏼓􏼒 􏼓[tNθ ]

(1, 1, 0)T (13)

→ (1, 0, 0)PetG(1, 1, 0)T as N→∞. (14)

The initial vector (1, 0, 0) enforces our assumed starting state, ξ0. 

The end vector (1, 1, 0)T enforces the requirement that the 

lineages remain distinct at generation [tNθ], i.e. that the Markov 

chain (Mg)g∈Z≥0 
has not reached state ξ2. Möhle’s result PetG is in 

the middle. Recall that P, which here is equal to A, instantaneous
ly adjusts the sample so that the effective starting state is ξ0 even 
if the sample state is ξ1. The lineages then enter the continuous- 
time process with rate matrix G. Overall we have

P etG (1, 1, 0)T =
(e− tλψ2

4 , e− tλψ2

4 , 0)T, if θ ∈ (0, 1),

(e− t(12+λψ2

4 ), e− t(12+λψ2

4 ), 0)T, if θ = 1.

􏼨

(15)

The right-hand side of equation (14) is equal to equation (5), and 
the proof of Lemma 1 is complete.                                               □
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Remark 1 (Robustness against perturbation of initial condition).
The form of P shows that the limiting result in Lemma 1 holds re
gardless of whether the sample begins in state ξ0, as we have as
sumed, or in state ξ1. So, other sampling schemes could be 
considered. In fact Lemma 1 still holds if the initial distribution 
lies in the set I :={(c, 1 − c, 0) ∈ [0, 1]3 : c ∈ [0, 1]}. This can be 
seen clearly in equation (15).

Limiting process by conditioning on the pedigree
Our main result is about the conditional distribution. We let

FN(t,A
(N,2)
) :=P(N)(τ(N,2) > [tNθ] | A(N,2)) (16)

be the conditional probability of the event {τ(N,2) > [tNθ]} given the 
(random) pedigree and the sampled pair of individuals. 

Mathematically, A(N,2) is the sigma-field (all information) gener
ated by the outcome of the random reproduction of the popula
tion and the knowledge which pair of individuals was sampled.

Theorem 1. Let λ ∈ R≥0, θ ∈ (0, 1], and set αN =
λ

Nθ. For all t ∈ (0, ∞), 
we have the following convergence in distribution as N→∞

FN(t, A
(N,2)
) →

1 − ψ2

4

􏼐 􏼑Y(t)
, when θ ∈ (0, 1),

e− t/2 1 − ψ2

4

􏼐 􏼑Y(t)
, when θ = 1,

⎧
⎪⎨

⎪⎩
(17)

where Y(t) is Poisson process with rate λ. In fact, the convergence in equa
tion (17) holds jointly for all t > 0, see the discussion in Remark A1 in the 
Strengthening the convergence in Theorem 1 section of Appendix A for 
details.

Theorem 1 offers a description of the conditional distribution of 
the coalescence time τ(N,2) for a sample of two genes in a population 
of size N given the pedigree. It says that the law of τ

(N,2)

Nθ , under the 
conditional probability P(· | A(N,2)), converges weakly as N→∞ to 
the law of a random variable (call it T) under a probability measure 
PY that depends on the Poisson process Y with rate λ. Furthermore, 
the survival function PY(T > t) is equal to the right-hand side of 
equation (17). In what follows, we will refer to FN(t, A

(N,2)) defined 
in equation (16) as the discrete survival function.

Theorem 1 has an intuitive interpretation. Taking the case 
θ = 1, the e− t/2 represents the probability that the two lineages 
have not coalesced by time t due to ordinary Wright–Fisher/ 
Kingman coalescence. Against this smooth backdrop there are 
Y(t) points, representing essentially instantaneous events in 
which a big family occurs and the lineages have a large probabil
ity, ψ2/4, of coalescing. Thus, there is an additional factor in the 
survival function representing the probability that the pair does 
not coalesce in any of these extreme events. The case θ ∈ (0, 1)
is analogous except the timescale is so short that there is no 
chance of an ordinary Wright–Fisher/Kingman coalescent event.

Note that when λ = 0, there are no large reproduction events and 
Y(t) ≡ 0. Then for θ ∈ (0, 1), the right-hand side of equation (17) is 1, 
i.e. there is no coalescence with probability 1. For θ = 1, the right- 
hand side of equation (17) is e− t/2 which is expected from the cumu
lative distribution function (CDF) of the Kingman coalescent for a 
sample of size 2, with our timescale. The degenerate case λ > 0 
but ψ = 0 effectively gives these same results for any Y(t).

Proof of Theorem 1
Recall that each g ∈ Z≥0 is a Wright–Fisher generation (resp. a gen
eration with a big family) with probability 1 − αN (resp. αN), inde
pendently for all g ∈ Z≥0. The number of generations with big 

families in {0, 1, . . . , G − 1}, denoted by HN(G), therefore has the 
binomial distribution Bin(G, αN).

We begin by addressing the technical point that we cannot ac
tually know just by looking at the pedigree whether g is a gener
ation with a big family, the way we have defined these as 
occurring only in special generations. Even in the classical 
Wright–Fisher model, every individual has the capacity to pro
duce a large number of offspring. But reproductive outcomes as 
extreme as our big families are exceedingly rare under ordinary 
Wright–Fisher reproduction when N is large.

To illustrate, consider the event that, spanning generations 
g+ 1 and g, there exists a pair of parents with at least [ψN] off
spring. In our population model, this is guaranteed to occur in 
generations with big families. Note that the two parents of a big 
family have an additional ∼Poisson(2(1 − ψ)) offspring because 
the other N − [ψN] offspring are produced according to the 
Wright–Fisher model. The event that a pair of parents with at least 
[ψN] offspring can also occur randomly in Wright–Fisher genera
tions, but only with small probability

ϵN ≤ N
2

􏼒 􏼓
N

[ψN]

􏼒 􏼓 1
N
2

􏼒 􏼓

⎛

⎝

⎞

⎠

[ψN]

≤
2[ψN]− 1

N[ψN]− 2
.

Let QN(G) be the number of generations g ∈ {0, 1, . . . , G − 1} in 
which such an event occurs between g+ 1 and g. Then QN(G) is ex
tremely close to the binomial variable HN(G) ∼ Bin(G, αN) because

HN(G) ≤ QN(G) and QN(G) ≤ Bin(G, αN + ϵN), (18)

where the first inequality holds almost surely and the second is a 

stochastic dominance. Since αN =
λ

Nθ, for each t ∈ (0, ∞) and θ ∈ 
(0, 1] we have convergence in distribution

QN([tNθ]) → Y(t) as N→∞ (19)

which is identical to the limiting result for HN([tNθ]). In other 
words, ϵN is so small for any sizeable N, that we are safe in assum
ing that such extreme events in the pedigree reliably signify gen
erations with big families as defined under our model.

Indeed, from the discussion above we have

lim
N→∞

E(N) 1 −
ψ2

4

􏼒 􏼓HN([tN])

− 1 −
ψ2

4

􏼒 􏼓QN([tN])
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2
⎡

⎣

⎤

⎦ = 0 (20)

so that we can (and will) in the following computations replace 
HN([tN]) by QN([tN]) without changing any limit as N→∞.

Proof of equation (17) when θ = 1
In this case, it suffices to show that

lim
N→∞

E(N) FN(t, A
(N,2)) − e− t/2 1 −

ψ2

4

􏼒 􏼓QN([tN])
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2
⎡

⎣

⎤

⎦ = 0. (21)

Expanding the square in equation (21) gives

E(N) F2
N(t, A

(N,2)
) − 2e− t/2 FN(t, A

(N,2)
) 1 −

ψ2

4

􏼒 􏼓QN([tN])
􏼢

+e− t 1 −
ψ2

4

􏼒 􏼓2 QN([tN])
􏼣

,

(22)
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which requires the computation of three expectations. The first is 
the expectation of the square of the discrete survival function,

E(N)[F2
N(t, A

(N,2)
)]. (23)

The second is the expectation of the discrete survival function 
times the probability that a single pair of lineages does not co
alesce in any of the generations with big families in the pedigree 
up to time t,

E(N) FN(t, A
(N,2)
) 1 −

ψ2

4

􏼒 􏼓QN([tN])
􏼢 􏼣

, (24)

The third is the expectation of the square of the same, latter prob
ability that a single pair of lineages does not coalesce in any of the 
generations with big families in the pedigree up to time t,

E(N) 1 −
ψ2

4

􏼒 􏼓2 QN([tN])
􏼢 􏼣

. (25)

First term in equation (22)
The expectation in equation (23) can be computed by considering 
two samples of size 2 whose lineage dynamics are conditionally 
independent given A(N,2). Genetically, this corresponds to the an
cestral processes of two unlinked loci given the pedigree and the 
two sampled individuals, and where one gene copy has been 
sampled at each locus from each of the individuals. Let τ and τ′

be the coalescence times of these two pairs of sampled gene cop
ies. Due to the conditional independence of these coalescence 
times, for all g ∈ Z+ we have

P
(N)
A(N,2)
(τ > g, τ′ > g) = P

(N)
A(N,2)
(τ > g)P(N)

A(N,2)
(τ′ > g) (26)

in which P
A(N,2)
(·) is shorthand for P(· |A

(N,2)
) in equation (16). 

Setting g = [tN] and taking expectations on both sides of equation 
(26) gives

E(N)[F2
N(t, A

(N,2))] = E(N)[P(N)
A(N,2)
(τ > [tN]) P(N)

A(N,2)
(τ′ > [tN])]

= E(N)[P(N)
A(N,2)
(τ > [tN], τ′ > [tN])]

= P(N)(τ > [tN], τ′ > [tN]).

(27)

In order to compute the limit as N→∞ in equation (27), we intro
duce the ancestral process of two conditionally independent sam
ples given the pedigree.

Joint diploid ancestral process
The stochastic dynamics of the two conditionally independent, gi
ven the pedigree, pairs of lineages are described by the joint diploid 
ancestral process 􏽥M :=(􏽥Mg)g∈Z≥0

. This is a Markov chain with state 
space S = {ξ(4)00 , ξ(3)00 , . . . , ξΔ} described below, where 􏽥Mg is the state 
of the two pairs of lineages in a common pedigree g generations 
backwards in time. Denote by 􏽥ΠN its transition matrix, the deriv
ation of its entries is available in the The joint diploid ancestral pro
cess with 10 states is Markovian section of Appendix A and its 
entries are available in the Transition matrix for a generation with a 
big family section of Appendix A for a generation with a big family 
and in the Two extremes for the sizes of big families section of 
Appendix A for a Wright–Fisher generation.

Similarly to the proof of Lemma 1, denote by † an ancestral lin
eage of a gene copy in the first pair and by ⋆ the same for the se
cond pair. Parentheses are used to denote individuals. More 
precisely, consider the following 10 states:

ξ(4)00 = (†)(†)(⋆)(⋆)

ξ(3)00 = (†)(†⋆)(⋆)

ξ(2)00 = (†⋆)(†⋆)

ξ(2)10 = (††⋆)(⋆)

ξ(2)01 = (⋆ ⋆ †)(†)

ξ(3)10 = (††)(⋆)(⋆)

ξ(3)01 = (⋆⋆)(†)(†)

ξ(2)11 = (††)(⋆⋆)

ξ(1)11 = (†† ⋆ ⋆)
ξΔ = coal. 

The superscript indicates the total number of individuals in which 
the 4 ancestral lineages reside. The two subscripts tell us the states 
of the two pairs respectively: 0 means a pair of lineages in state ξ0 

and 1 means a pair of lineages in state ξ1, with these as defined in 

the proof of Lemma 1. For example, ξ(3)10 involves 3 individuals in 

which the first pair of lineages are in the the same individual and 
the second pair of lineages is in different individuals. Finally, the 
state ξΔ is an absorbing state which represents the event that at 
least one of the two pairs has coalesced. The order of the states 
is arbitrary, based first on the subscripts then on the superscripts.

By definition, the two pairs of gene copies are drawn from the 
same pair of individuals at the present generation g = 0, where 
for each pair one gene copy is picked from each of the individuals. 
Hence the initial state 􏽥M0 must be ξ(2)00 . In other words, the distribu
tion 􏿻p0 of 􏽥M0 is given by

􏿻p0 = (0, 0, 1, . . . , 0). (28)

It follows from Lemma A1 in the Limiting behavior of the joint diploid 
ancestral process section of Appendix A that

lim
N→∞

P(N)(τ > [tN], τ′ > [tN]) = lim
N→∞

􏿻p0 ·
􏽥Π[tN]

N (1, . . . , 1, 0)T (29)

= (0, 0, 1, 0, . . . , 0)􏽥Pet􏽥G(1, . . . , 1, 0)T (30)

= e− te− λt(ψ
2

2 −
ψ4

16), (31)

where equation (29) follows from the definition of 􏽥M and 􏿻p0, equa
tion (30) from Möhle (1998a, Lemma 1) as explained in the Limiting 
behavior of the joint diploid ancestral process section of Appendix A and 

equation (31) by Lemma A1. Note that the vector (1, . . . , 1, 0)T in 

equations (29) and (30) amounts to the Markov chain (􏽥Mg)g∈Z≥0 

not reaching state ξΔ, i.e. that neither pair has coalesced.

Limiting behavior of the joint diploid ancestral process
Remark 2 (Robustness of joint process to initial condition). Our 
assumed initial state ξ(2)00 is the usual way multilocus data are 
sampled in population genetics. But Lemma A1 and Theorem 1
both hold for any initial state 􏿻p0 whose last coordinate is zero. 
This is because the sample will undergo an instantaneous adjust
ment by 􏽥P given in equation (A20), so that the effective starting 
state is always ξ(4)00 . Whatever idiosyncrasies A(N,2) may possess, 
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especially in the recent past, sensu Chang (1999), meaning the 
most recent log2(N) generations, these matter less and less as N 
grows. In the limit, the lineages of the sample immediately dis
perse to different individuals without undergoing any coalescent 
events. Similarly, the factors of 􏽥P in 􏽥G guarantee that the lineages 
will remain in state ξ(4)00 throughout the ancestral process, except 
for instants in which they have a chance to coalesce. This robust
ness against initial condition is analogous to equation (14).

Second term in equation (22)
We now show that equation (24) converges to e− t/2e− λt(ψ

2

2 −
ψ4

16) as 
N→∞. Through the use of the law of total expectation, equation 
(24) is equal to

􏽘[tN]

k=0

E(N)[P(N)
A(N,2)
(τ > [tN]) ∣ QN([tN])=k] 1 −

ψ2

4

􏼒 􏼓k

P(N)(QN([tN])=k). (32)

By the fact that QN([tN]) is known given the pedigree and an appli
cation of the tower property, the conditional expectation in equa
tion (32) is equal to

P(N)(τ > [tN] ∣ QN([tN]) = k),

which is approximately equal to

P(N)(τ > [tN] ∣ HN([tN]) = k),

by equation (18). That is to say

E(N) P
(N)
A(N,2)
(τ > [tN]) 1 −

ψ2

4

􏼒 􏼓QN([tN])
􏼢 􏼣

≈ E(N) P
(N)
HN
(τ > [tN]) 1 −

ψ2

4

􏼒 􏼓HN([tN])
􏼢 􏼣

,

in the sense that equation (20) holds. By Lemma A2 in Appendix A, 
for g = [tN], it follows that for each N ≥ 2 and t ∈ (0, ∞),

E(N) P
(N)
HN
(τ > [tN]) 1 −

ψ2

4

􏼒 􏼓HN([tN])
􏼢 􏼣

= (1, 0, 0) Πmid
N

􏼐 􏼑[tN]
(1, 1, 0)T, (33)

where Πmid
N is defined as

Πmid
N :=αN 1 −

ψ2

4

􏼒 􏼓

ΠBF
N + (1 − αN)ΠWF

N . (34)

It now follows by Lemma A3 that the right-hand side of equation 

(33) converges to e− t/2e− λt(ψ
2

2 −
ψ4

16).

Third term in equation (22)
Finally, equation (25) is computed by first noticing that the num
ber of big families up to generation T, QN(T), is (almost) binomially 
distributed according to Bin([T], αN) for all T ≥ 1, as observed by 
equation (18). Using the probability generating function of Q N(T)
we get that the third term in equation (22) is equal to e− λt(ψ

2

2 −
ψ4

16).

Putting everything together
As N→∞, equation (22) is equal to 0 since equation (25) multi
plied by e− t and equation (23) add up to 2e− te− λ(ψ

2

2 −
ψ4

16)t which cancel 

out with (24) multiplied by − 2e− t. This gives (21) which concludes 
the proof of Theorem 1 in the case of θ = 1.

Convergence (17) when θ ∈ (0, 1)
The proof is similar to the case of θ = 1. In all of the above, substi
tute [tN] by [tNθ], and show instead of equation (22) that

lim
N→∞

E(N) FN(t, A
(N,2)) − 1 −

ψ2

4

􏼒 􏼓QN([tNθ ])
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2⎡

⎣

⎤

⎦ = 0. (35)

Expanding equation (35) gives the same three terms as in equa
tions (23)–(25). In this faster timescale, as N→∞, equation (23) 
is now equal to

lim
N→∞

E(N)[F2
N(t, A

(N,2))] = e− λt(ψ
2

2 −
ψ4

16), (36)

as available in Lemma A1. The limiting behavior of equation (24) is 
the same as before, that is

lim
N→∞

E(N) FN(t, A
(N,2)
) 1 −

ψ2

4

􏼒 􏼓QN([tN])
􏼢 􏼣

= e− λt(ψ
2

2 −
ψ4

16) (37)

and

lim
N→∞

E(N) 1 −
ψ2

4

􏼒 􏼓2QN([tNθ)
􏼢 􏼣

= e− λt(ψ
2

2 −
ψ4

16). (38)

Multiplying equation (37) by − 2 and summing it up with equations 
(36) and (37) concludes the proof in the case of θ ∈ (0, 1).

The proof of Theorem 1 is complete.

Remark 3 (Only big families matter). Let 􏿻G (N) = (G(N)1 , G(N)2 , . . .), 
where 0 ≤ G(N)1 < G(N)2 < · · ·, be the generations with big families 
that have (randomly) occurred. Then 􏿻G(N) is known if we know 
the pedigree. Similar to equation (16), we let

FN(t, 􏿻G(N)) :=P(N)(τ(N,2) > [tNθ] | 􏿻G(N)) (39)

be the conditional probability of the event {τ(N,2) > [tNθ]} given the 

(random) generations 􏿻G (N). Hence, here we condition on less infor
mation than on the left-hand side of equation (17). We can show 
that Theorem 1 still holds (i.e. the weak convergence in equation 

(17) still holds) if we replace FN(t, A
(N,2)) by FN(t, 􏿻G(N)). For a proof 

sketch, see Proof sketch for Remark 3 section of Appendix A.

Coalescence times, gene genealogies, and 
correlations
Here, we briefly recap then provide three illustrations of our re
sults. Our main result is Theorem 1 which describes two limiting 
distributions of coalescence times conditional on the pedigree. As 
the number of unlinked loci examined in the sampled individuals 
increases, the empirical distribution of their coalescence times 
should converge to Theorem 1. In this case, conditional on the 
pedigree, the probability of coalescence in a generation depends 
on whether that particular generation includes a big family. For 
background and comparison, Lemma 1 presents the correspond
ing two limiting distributions obtained by the usual method of 
averaging over pedigrees, i.e. over all possible outcomes of repro
duction in a single generation, including the possibility of a big 
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family. In this case, the probability of coalescence is the same in 
every generation.

Time is rescaled in all of these limiting ancestral processes. It is 
measured in units of Nθ generations for some θ ∈ (0, 1]. When 
θ ∈ (0, 1), the timescale for big families to occur is much shorter 
than the usual Wright–Fisher coalescent timescale of N genera
tions. When θ = 1, the timescales for big families and for ordinary 
Wright–Fisher coalescence are the same. Big families occur at rate 
λ in rescaled time, and their offspring comprise a fraction ψ ∈ 
[0, 1] of the population in that generation. Underpinning our re
sults is the fact that as N→∞ ancestral genetic lineages spend 
the overwhelming majority of their time in separate individuals, 
i.e. in state ξ0 for a pair of lineages at the same locus (cf. Lemma 
1) or state ξ(4)00 for two pairs of lineages at two unlinked loci (cf. 
Theorem 1 and Remark 2). Thus, when a big family occurs, each 
lineage independently: (1) is among the offspring of the highly re
productive pair with probability ψ and (2) if so, is equally likely to 
descend from each of the four copies of the corresponding locus in 
the two parents. A pair of lineages at the same locus coalesces in 
the big family with probability ψ2/4. Pairs of lineages at different, 
unlinked loci do this independently.

Our first illustration compares our limiting results to the CDF 
(i.e. one minus the survival function) of pairwise coalescence 
times in the discrete model. Figure 1a displays CDFs for five simu
lated pedigrees for N = 500, assuming that the probability of a big 
family is equal to the expected pairwise coalescence probability, 

1/(2N) = 0.001, and the offspring make up the entire population 
in that generation. This corresponds to the limiting process in 
Theorem 1 with θ = 1, λ = 1/2 and ψ = 1. This makes the coales
cence probability (ψ2/4) equal to 1/4 in each generation with a 
big family. We computed coalescence probabilities on each pedi
gree in each generation starting from a pair of randomly sampled 
individuals using the method in Wakeley et al. (2012). The corre
sponding “expected” CDF of the pedigree-averaged process from 
Lemma 1, i.e. of an exponential random variable with rate param
eter 5/8, is shown for comparison.

The left panel of Fig. 1a illustrates that the ancestral process 
conditional on the pedigree is quite close to limiting result in 
Theorem 1, even when N = 500. The CDFs make discrete jumps 
whenever big families occur. In this case, with ψ = 1 the magni
tude of a jump is always 1/4 of the remaining distance to 1. 
Between jumps the CDFs show a steady increase in the cumula
tive coalescence probability, in line with the limiting prediction 
with its rate of 1/2. In contrast, the pedigree-averaged process in 
Lemma 1 predicts a faster rate of increase of the CDF and no 
jumps.

The right panel of Fig. 1a details the short-time behavior of the 
ancestral process conditional on the pedigree, displaying these 
same CDFs only over the most recent 40 generations. The scale 
on the vertical axis is such that the diagonal corresponds approxi
mately to the prediction of the background Wright–Fisher model 
(not shown) and a line with slope 1.25 corresponds approximately 

(a)

(b)

Fig. 1. CDFs of pairwise coalescence times for θ = 1 and λ = 1/2. a) (left panel) CDFs for five simulated pedigrees for populations of size N = 500 together 
with the corresponding expected CDF from Lemma 1. (Right panel) The same five CDFs and the corresponding expectation from Lemma 1, only plotted 
over the most recent 40 generations. b) Corresponding results for a single pedigree for a population of size N = 500 but five different pairs of individuals, 
each sampled independently without replacement from the population.
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to prediction of Lemma 1 which is shown. After a small number of 
generations, which from Chang (1999) should be of order log2(N), 
the CDFs for the five pedigrees start to show the predicted Wright– 
Fisher slope of one. However, they start at different places de
pending on the particular ancestries of the sampled individuals, 
specifically whether there are very recent shared ancestors as in 
pedigree 5 or more likely there are no very recent shared ancestors 
as in pedigrees 1 through 4; cf. also Wakeley et al. (2012). These dif
ferences are barely visible on the timescale of the left panel of 
Fig. 1a, and it is implicit in Theorem 1 that they become negligible 
as N→∞.

As stated in equation (26), the predictions for each of the five 
pedigrees in Fig. 1a apply equally and independently to every lo
cus in the sampled individuals. These five, like five instances of 
Theorem 1, are again predictions for the empirical distributions 
of coalescence times among unlinked loci. Different instances of 
A(N,2) will have different times of big families (Fig. 1a, left panel) 
and different patterns of recent common ancestry of the samples 
(Fig. 1a, right panel). For comparison, Fig. 1b shows the same two 
graphs for five independently sampled pairs of individuals on a 
single pedigree. Again, each sample has its own pattern of recent 
common ancestry, producing visible differences on the scale of 
the right panel. But now all five samples access the same shared 
set of big families, resulting in the five closely overlapping CDFs 
in the left panel of Fig. 1b.

Next we illustrate the effects that big families have on the gene 
genealogies of larger samples, in particular the sharing of identi
cal coalescence times at unlinked loci. Rather than simulating 
pedigrees for finite populations, we use the limiting model directly 
so that big families are the only possible cause of shared coales
cence times. We set ψ = 1 as before, and for simplicity assume 
that big families drive the ancestral process, i.e. θ ∈ (0, 1). We 
set λ = 1 without loss of generality, as λ is arbitrary except when 
θ = 1.

Based on Theorem 1, we model gene genealogies by generating 
a series of exponential waiting times between big families and, 
since θ ∈ (0, 1), disallowing coalescence between them. When 
the n ancestral lineages of the sample reach the first big family, 
their distribution among the four parental gene copies will be 
multinomial with parameters n and (1/4, 1/4, 1/4, 1/4). 
Anywhere from one to four simultaneous multiple mergers will 
occur. The number of ancestral lineages which emerge is also at 
most four. If more than one lineage emerges, the same process 
is repeated until a single lineage remains which is the most recent 
common ancestor of the entire sample. The only aspects of the 
pedigree which persist in the limit are the big families (cf. 
Remark 3). Thus, independent runs of this multinomial coales
cent process using the same series of exponential waiting times 
correspond to gene genealogies of unlinked loci conditional on 
the pedigree.

Figure 2a displays the gene genealogies of seven unlinked loci 
for a sample of size 16, assuming in this way that all loci share 
the same pedigree. The trees are oriented with the present-day 
samples at the bottom. Solid lines trace (unlabeled) ancestral 
lineages up into the past. Thin dotted lines show the times of 
the big families. All seven gene genealogies have multiple mergers 
at the most recent big family in the past, and five have common 
ancestor events at the second one. In the more distant past 
when there are small numbers of ancestral lineages, there is 
less sharing of coalescence times among gene genealogies. This 
is expected; for example, the final two lineages only coalesce 
with probability 1/4 each time they encounter a big family.

Figure 2b shows seven gene genealogies, again for samples of 
size 16, but now assuming that each locus has its own pedigree. 
These are equivalent to seven gene genealogies sampled from se
ven independent populations, each with its own series of expo
nential waiting times between big families as in Fig. 2a (not 
displayed in Fig. 2b). These gene genealogies differ from the 

(a)

(b)

Fig. 2. Simulated gene genealogies for seven independently assorting loci when all seven share the same pedigree a) vs when each locus has its own 
independently generated pedigree b). The sample size is n = 16 for every locus. Gene genealogies were generated as described in the text for the limiting 
model with θ ∈ (0, 1) and λ = ψ = 1. Thin dotted lines in the top row show the particular series of times of big families in that population.
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ones in the top row, most obviously in the different timings of 
their first common ancestor events. Clearly, the distribution of 
gene genealogies produced in this way will not be close to the dis
tribution of gene genealogies of unlinked loci in the same genome 
which perforce come from the same population.

Finally, we illustrate how averaging over pedigrees as in 
Lemma 1 results in positive correlations of coalescence times be
tween unlinked loci. Explicitly modeling pedigrees as in Theorem 
1 predicts these to be zero as might be expected for independently 
assorting loci. Based on the property of ancestral lineages spend
ing the overwhelming majority of their time in separate indivi
duals, cf. Remarks 1 and 2, we consider the two-locus analog of 
Lemma 1 with reduced state space

ξ00 = (†)(†)(⋆)(⋆)
ξ10 = (†)(⋆)(⋆)
ξ01 = (†)(†)(⋆)
ξ11 = (†)(⋆),

where now the first and second subscripts are indicators of 
whether locus 1 or locus 2 has coalesced. By extension from 
Lemma 1, the limiting ancestral process for two unlinked loci 
has transition rate matrix

Q =
λQBF, if θ ∈ (0, 1)

QWF + λQBF, if θ = 1,

􏼨

(40)

where

QBF =

ξ00

ξ10

ξ01

ξ11

ξ00 ξ10 ξ01 ξ11

−
ψ2

4 2 − ψ2

4

􏼐 􏼑
ψ2

4 1 − ψ2

4

􏼐 􏼑
ψ2

4 1 − ψ2

4

􏼐 􏼑
ψ4

16

0 − ψ2

4 0 ψ2

4

0 0 −
ψ2

4
ψ2

4

0 0 0 0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(41)

and

QWF =

ξ00

ξ10

ξ01

ξ11

ξ00 ξ10 ξ01 ξ11

− 1 1
2

1
2 0

0 − 1
2 0 1

2

0 0 − 1
2

1
2

0 0 0 0

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦
. (42)

Focusing on the case θ = 1, the rate matrix Q is the sum of a 
Wright–Fisher (or Kingman coalescent) component and a big- 
family component. We have factored the tuning parameter λ out 
of the latter to emphasize that, conditional on the occurrence of 
a big family, samples at the two loci coalesce or do not coalesce in
dependently of each other.

Let T1 and T2 be the coalescence times at the two loci. These 
correspond to the limiting random variables τ/Nθ and τ′/Nθ in 
Lemma A1. Here individually they are the times to state ξ11 start
ing from states ξ01 and ξ10, respectively. From the rate matrix Q in 
equation (40) or from Lemma 1 directly, T1 and T2 are identically 
distributed. In particular,

T1 ∼
exponential λ ψ2

4

􏼐 􏼑
, if θ ∈ (0, 1)

exponential 1
2+ λ ψ2

4

􏼐 􏼑
, if θ = 1.

⎧
⎨

⎩
(43)

However, T1 and T2 are not necessarily independent. Lemma A1
accounts for this nonindependence in the proof of Theorem 1, 

and we note that equation (40) also gives equation (A22). Here, 
we use first-step analysis to compute the correlation coefficient, 
Corr[T1, T2]. Let W be the waiting time to the first event in the an
cestry of the two loci starting from state ξ00, and T∗1 and T∗2 be the 
additional times to coalescence at each locus following the first 
event. In this formulation,

Ti =W+ T∗i (44)

for i ∈ {1, 2}. From equation (40), we have

W ∼
exponential λ ψ2

4 2 − ψ2

4

􏼐 􏼑􏼐 􏼑
, if θ ∈ (0, 1)

exponential 1+ λ ψ2

4 2 − ψ2

4

􏼐 􏼑􏼐 􏼑
, if θ = 1

⎧
⎨

⎩
(45)

and we point out that, since W is exponentially distributed,

E[W2] = 2E[W]2
. (46)

Conditioning on the first step from state ξ00 and simplifying,

E[T1T2] = E[W2]+ E[W]E[T∗1]+ E[W]E[T∗2]+ E[T∗1T∗2] (47)

= 2E[W]E[T1]. (48)

Going from equations (47) to (48) uses equations (46), (44), 
E[T1] = E[T2], and the fact that either T∗1 or T∗2 or both are equal 
to zero following the first event. Then for the correlation coeffi
cient, we have simply

Corr[T1, T2] =
2E[W]E[T1] − E[T1]2

Var[T1]
, (49)

which, using equations (43) and (45), becomes

Corr[T1,T2] =

ψ2

8− ψ2 , ifθ ∈ (0, 1) (50a)
λψ4

16+λψ2(8− ψ2),
ifθ = 1. (50b)

⎧
⎨

⎩

Even though the loci assort independently, their ancestries in the 
pedigree-averaging model jointly depend on the random process 
that generates big families in the population. As a result, their co
alescence times are positively correlated.

The correlation coefficient (50b), obtained here under the as
sumption that the loci are unlinked, corresponds to equation 
(31) in Birkner et al. (2013b, p. 266), obtained there by modeling re
combination explicitly and then taking the limit as the rescaled 
recombination parameter tends to infinity. The timescales in 
these two works differ by a factor of two. Our equation (50b) be
comes identical to equation (31) in Birkner et al. (2013b) by putting 
λ = c/2.

For a given value of ψ, the correlation coefficient is smaller 
when θ = 1 than when θ ∈ (0, 1). When coalescence can be due 
to either big families or ordinary Wright–Fisher reproduction 
(θ = 1), the correlation tends to zero as λ tends to zero. As λ grows, 
equation (50b) grows until it approaches (50a). Thus, the occur
rence of big families may be said to be the source of positive cor
relations in coalescence times at unlinked loci. In a similar vein, 
Corr[T1, T2] tends to zero as the fraction of the population re
placed by each big family, ψ, tends to zero. This is true even if 
θ ∈ (0, 1), i.e. when there is no Wright–Fisher/Kingman compo
nent in the limit process. At the other extreme, as ψ→ 1, 
Corr[T1, T2]→ 1/7 which is considerably less than one. Even 
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when all coalescence happens in big families and the offspring of 
each big family replace the entire population, there are still two 
diploid parents and the loci will generally have different coales
cence times.

The following alternate derivation of equation (50a) shows how 
these positive correlations arise. In short it is because T1 and T2 

have a shared dependence on the times between big families in 
the pedigree. Implicitly, Lemma 1 averages over these times 
whereas Theorem 1 retains them.

When θ ∈ (0, 1), coalescence can only happen when a big 
family occurs. Let K1 and K2 be the numbers of such events it 
takes for locus 1 and locus 2 to coalesce, respectively. These 
do not depend on the times between big families when 
θ ∈ (0, 1). Further, K1 and K2 are independent because the loci 
are unlinked. They are geometric random variables with param
eter ψ2/4. Let Xi, i ∈ Z≥0, be the time from the (i − 1)th to the ith 
big family backward in time, with X0 ≡ 0. In the context of 
Theorem 1, these times are independent and identically distrib
uted exponential random variables with rate parameter λ. Under 
this formulation,

Ti =
􏽘Ki

j=1

Xj (51)

for i ∈ {1, 2}. There are two sources of variation in Ti: variation in 
Ki and variation in the lengths of the intervals, Xj, j ∈ {1, . . . , Ki}. 

Starting with equation (51), it is straightforward to confirm that 

the distribution of Ti is exponential with rate parameter λψ2/4 as 
in equation (43) or Lemma 1.

From equation (51) and the fact that Xi and Xj are independent 
for i ≠ j, it is also clear that intervals in a common to T1 and T2 are a 
key source of their covariation. For given values of K1 and K2, they 
are the only source. The first interval is always shared, as are all 
subsequent intervals until one or the other locus coalesces. Let 
K12 be the number of these shared intervals and

T12 =
􏽘K12

i=1

Xi (52)

be the corresponding total length of time. By definition 
K12 =min(K1, K2). The more ancient K1 − K2 or K2 − K1 intervals 
are only ancestral to one of the loci.

Applying the conditional covariance formula, or law of total co
variance, we have

Cov[T1, T2]= E[Cov[T1, T2|K1, K2]]+Cov[E[T1|K1, K2], E[T2|K1, K2]]

= E[Var[T12|K12]]+Cov[E[T1|K1], E[T2|K2]].

(53)

The outer expectation and covariance are with respect to the joint 
distribution of K1 and K2. Note that K12 is a marginal property of 
this distribution. The inner variance (or covariance) and expecta
tions are with respect to the joint distributions of the Xi which are 
the only parts of T1 and T2 that vary conditional on K1 and K2.

At this point, in equation (53), we have not applied the funda
mental property that K1 and K2 are independent since the loci 
are unlinked, nor have we assumed any particular distribution(s) 
for the Xi. We have only used the definitions of T1 and T2 as sums 
of random variables and the assumption that Xi and Xj are inde
pendent for i ≠ j. So we may consider that the interval times are 
fixed numbers: Xi ≡ xi, i ∈ Z≥0. They could be the outcomes of 
the exponential random times implicit in Theorem 1. Fixing 

the Xi means fixing the only aspects of the pedigree that persist 
in the limiting model. Conditioning on the pedigree, T1 and T2 

are independent even in the limiting model; cf. equation (26). 
The point we wish to emphasize here is that fixing the Xi re
moves one particular source of covariation of T1 and T2. It 
makes Var[T12|K12] = 0.

Continuing from equation (53) and assuming that Xi, i ∈ Z≥0, 
are independent and identically distributed

Cov[T1, T2] = E[K12] Var[Xi]+ E[Xi]
2 Cov[K1, K2]

= E[K12] Var[Xi],
(54)

the latter following from the independence of K1 and K2. Again, 
Xi ∼ exponential(λ), and from the definition of K12 as the number 
of big-family events it takes for one locus or the other to coalesce,

K12 ∼ geometric 1 − 1 −
ψ2

4

􏼒 􏼓􏼒 􏼓

. (55)

Putting the required quantities in equation (54) and simplifying 
gives

Cov[T1, T2] =
16

λ2ψ2(8 − ψ2)
(56)

which is exactly the covariance needed to produce the correlation 
coefficient (50a). In sum, the model of Lemma 1 predicts a positive 
correlation of coalescence times at unlinked loci because it 
averages over the distributions of the intervals Xi. Starting instead 
with the model of Theorem 1 shows that the particular quantity 
controlling these positive correlations is Var[Xi].

Discussion
The use of random models to describe past events raises many 
questions in population genetics. Everything in the past has al
ready occurred, including all instances and timings of reproduc
tion and genetic transmission. For empirical work this may be a 
truism. But population genetics has always been concerned with 
evolutionary processes. How do mutation, recombination, selec
tion, random genetic drift, nonrandom mating, limited dispersal, 
etc., conspire to produce observable patterns of variation? By 
emphasizing the fixed nature of the past, we highlight the sub
jectivity of theoretical work, specifically when the goal is to in
terpret data from natural populations. Ultimately, the choices 
one makes about modeling the past may be application- 
dependent.

Motivated by applications to multilocus data, we singled out 
the pedigree as a key feature of the past and obtained a result 
(Theorem 1) concerning the application of neutral coalescent 
models in sexually reproducing species. We have the following 
sampling structure in mind. Processes of survival and reproduc
tion result in a pedigree. Genetic transmission, including muta
tion and recombination across the entire genome, occurs 
within the pedigree. A number of individuals are sampled from 
the population and some or all of their genomes are sequenced. 
We modeled the single-locus coalescent process conditional on 
the pedigree. Our results specify the distribution of coalescence 
times given the pedigree and the sampled individuals. This dis
tribution can be interpreted either as a prior for a single locus 
or as a prediction about the distribution of coalescence times 
among unlinked loci. We contrasted our results conditional on 
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the pedigree with results obtained by averaging over pedigrees, 
noting that the latter is the tradition of theoretical population 
genetics. We did not model mutation or recombination, but our 
fundamental conclusion—that some population processes cause 
the quenched and averaged processes to be very different— 
should be as important for genetic variation as it is for coales
cence times.

We can compare our framework with that of Ralph (2019). The 
two have a lot in common. Ralph (2019) takes the pedigree and the 
outcomes of genetic transmission, including recombination 
across the entire genome, to be fixed. The latter is referred to as 
the ancestral recombination graph (ARG), which we note differs 
slightly from the corresponding objects in Hudson (1983a) and 
Griffiths and Marjoram (1997) because it is embedded in the fixed 
pedigree. Without specifying a generative model for the pedigree, 
Ralph (2019) focuses on the ARG as the fixed but unknown object 
of interest in empirical population genetics. A sample is taken and 
some stretch of the genome is sequenced. Its ancestry is a collec
tion of gene genealogies, a subset of the ARG. Implicitly, it is the 
outcome of the random process of genetic transmission within 
the fixed pedigree, but this too is not modeled.

The only randomness is in how the collection of gene geneal
ogies of the sample is revealed by mutation. Ralph (2019) assumes 
the infinite-sites mutation process and uses this to show that pre
dictions about summary statistics of DNA sequence variation, 
such as the average number of pairwise nucleotide differences 
or the F-statistics of Patterson et al. (2012), can be expressed in 
terms of the fixed branch lengths in the sampled subset of the 
ARG. This is the empirical version of what Slatkin (1991), 
Griffiths and Tavaré (1998), Nielsen (2000), McVean (2002), and 
Peter (2016) had done in the context of the standard neutral co
alescent, where instead the moments of summary statistics can 
be expressed in terms of corresponding moments of branch 
lengths. Ralph et al. (2020) describe a hybrid approach, with the 
ARG conceived as in Ralph (2019) and with times of events in 
the ARG for data from humans (The 1000 Genomes Project 
Consortium 2015) estimated with the aid of the standard neutral 
coalescent (Speidel et al. 2019).

Whereas we model the production of the pedigree and the pro
cess of coalescence within it but do not model mutation, Ralph 
(2019) models only mutation on the fixed ARG. Consider a species 
in which recurrent selective sweeps across the genome have 
structured the ARG. An empirical estimate of the ARG would 
find regions of the genome with reduced variation due to reduced 
times to common ancestry. In order to relate these observations to 
an evolutionary process within the empirical framework of Ralph 
(2019), for example to describe them in terms of recurrent select
ive sweeps as in Durrett and Schweinsberg (2005), additional mod
eling would be needed. In contrast, in a theoretical approach such 
as ours here, recurrent sweeps would be included in the model at 
the outset, and this in turn would facilitate the interpretation of 
patterns in the data. Under our model, it is important to keep in 
mind that the ARG is in fact a fixed object and that the process 
of coalescence within the pedigree models the sampling of a locus 
in the ARG.

Today detailed estimates of the ARG for large samples of hu
man genomes are available (Wohns et al. 2022; Zhang et al. 
2023). These have been obtained, like other recent estimates 
(Kelleher et al. 2019; Speidel et al. 2019; Albers and McVean 
2020), using the standard neutral coalescent as a prior for gene ge
nealogies and times to common ancestry. Our results and those of 
Tyukin (2015) help to justify using such a prior despite the fact 
that the pedigree is fixed, so long as the processes which laid 

down the pedigree are not too different from the Wright–Fisher 
or Cannings models with relatively low variation of offspring 
numbers. The empirically oriented interpretations in these works, 
for example in Wohns et al. (2022), connect features of the ARG 
with major events in human history, such as the out-of-Africa 
event which has been studied genetically since the first mtDNA 
discoveries (Cann et al. 1987; Vigilant et al. 1991) and the novel find
ing of an accumulation of ancestry in Papua New Guinea more 
than 100-thousand years ago. This is intraspecific phylogeography 
(Avise et al. 1987; Avise 1989, 2000) at genome scale.

Our model for generating the pedigree includes the possibility 
of special generations in which a big family is guaranteed to occur. 
We obtained different coalescent processes as N→∞, depending 
on the relative rate of these big families in the limit and whether 
the ancestral process is conditional on the pedigree (Theorem 1) 
or not (Lemma 1). This essentially negative result, that the aver
aged process cannot be used in place of the conditional process, 
includes the positive finding that the Kingman coalescent can be 
used between big families in the case that both occur on the 
same timescale (Theorem 1 with θ = 1). The numbers and timings 
of big families are all that is left of the pedigree in the limit (cf. 
Remark 3). Needing to keep track of just these is much less daunt
ing than the prospect of including entire pedigrees in all of our 
population-genetic models. There may be other circumstances 
in which aspects of the pedigree are important, but so far the 
only other instance identified is when subpopulations are con
nected by limited migration (Wilton et al. 2017).

Limiting coalescent processes for our model generally involve 
simultaneous multiple mergers. Yet the familiar extensions of 
the Kingman coalescent to include multiple mergers have been 
derived by averaging over the pedigree, not by conditioning on 
it. They begin with single-generation marginal probabilities of co
alescence, whereas in truth the individuals in the sample either 
have or do not have common ancestors in any preceding gener
ation and this is what determines probabilities of coalescence. 
Without big families, our results and those of Tyukin (2015) pro
vide belated justification for the early uses of the Kingman coales
cent process as a prior model for the gene genealogy of a single 
locus (Lundstrom et al. 1992; Griffiths and Tavaré 1994; Kuhner 
et al. 1995). Our work also clarifies what is involved in using 
pedigree-averaged ancestral processes as single-locus priors in 
cases where big families can occur.

If the only data available were from a single locus without re
combination, one could model the gene genealogy using the 
pedigree-averaged ancestral process. The logic would be that a 
single locus has one unknown random pedigree and one unknown 
random gene genealogy within that pedigree, and that the gene 
genealogies from multiple-merger coalescent models are margin
al predictions over both of these unknowns. For example, with 
n = 2, a single draw of a coalescence time from the appropriate ex
ponential distribution in Lemma 1 accounts for both sources of 
variation. Implicit in this accounting is that repeated samples 
would each have their own pedigree and conditional gene geneal
ogy. This 2-fold sampling structure is precisely what Theorem 1
describes. It is straightforward to show that repeated sampling 
under Theorem 1 (each time drawing a new pedigree) gives the 
same exponential distributions as in Lemma 1. Yet even for a sin
gle locus, it may be preferable to record the additional information 
about big families as in Theorem 1.

Applying this type of repeated sampling (i.e. including re
sampling the pedigree) to multiple loci is another matter. 
Population-genetic models should not allow the pedigree to vary 
among loci. Theorem 1 is a simple initial example of the kind of 
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coalescent modeling required for multilocus data generally but es
pecially when multiple-merger processes are implicated. In cases 
where big families may occur with some frequency, it is crucial 
to retain the information about the pedigree which matters for 
the gene genealogies at all loci. All multiple-merger coalescent 
models so far described, which implicitly average over the pedi
gree, are inadequate in this sense. The broader implication of 
Lemma 1 and Theorem 1 is that there exists a collection of 
quenched limits conditional on the pedigree which await descrip
tion and are the appropriate models for multilocus data.

The diploid exchangeable population models in Birkner et al. 
(2018) are a natural starting point for the description of general 
quenched-pedigree Ξ-coalescent models. Alternatively, parame
terized models could be considered, controlling for example rates 
of monogamy and the distribution of offspring numbers as in the 
program SLiM 3 (Haller and Messer 2019) or the Pólya urn scheme 
of Gasbarra et al. (2005). The latter was used for the prior in the 
Bayesian inference methods of Gasbarra et al. (2007a, 2007b) and 
Ko and Nielsen (2019) for estimating the recent few generations 
of the pedigree from sequence data. Selfing in the production of 
big families, which we assumed does not occur, could also be con
sidered. Nonexchangeable models for generating pedigrees are 
possible, for example with recurrent selective sweeps (Durrett 
and Schweinsberg 2005) or cultural transmission of reproductive 
success (Guez et al. 2023). It could also be of interest to describe 
these coalescent models directly in terms of the properties of ped
igrees as directed graphs, and here we note the study of Blath et al. 
(2014) as a start in this direction.

The model underlying Lemma 1 and Theorem 1 is very simple. 
Only one type of big family is allowed, these are distributed in 
time according to a Poisson process, and we only considered a 
sample of size two. We hypothesize that the basic principles of 
Theorem 1 will be robust to all of these. For example, other 
ways of generating big families should be possible, such that 
Y(t) ∼ Poisson(λt) would be replaced by some other distribution. 
Extensions to larger sample sizes and to variation in the numbers 
and types of big families seem straightforward in principle, 
though they will require a lot more bookkeeping. Such general
ization of big families will need to include sufficient details 
that Mendel’s laws can be applied. For example, if four parents 
have [ψN] offspring, it will matter whether they form two monog
amous pairs or comprise one big family with four parents, and in 
either case just how many offspring each pair has. In a more gen
eral model, such details will need to be specified for each big- 
family event.

The implications of our results for inference can be sketched as 
follows. Consider a general situation in which there may be spe
cial events like our big families in a well mixed population which 
has possibly changed in size over time. Assume that data are 
available for L unlinked loci and there is no intra-locus recombin
ation. Let D, G, A, Θm, and Θc represent the data, the collection 
of gene genealogies at the loci, the pedigree, the parameters of 
a mutation model and the parameters of a coalescent model, spe
cifically a trajectory of relative population sizes over time in a 
Kingman coalescent with variable size. Let Di and Gi be the data 
and the gene genealogy at the ith locus. Consider the likelihood, 
which is key to any sort of statistical inference. Traditional 
coalescent-based inference disregards A and computes the likeli
hood P(D; Θm, Θc) in which we use “; ” to indicate that Θm and 
Θc are treated as fixed parameters. The traditional computation 
proceeds by conditioning on G, treating this as a random variable, 
but does so under the erroneous assumption that P(G; Θc) is equal 
to the product of P(Gi; Θc) across loci.

Instead, because a shared pedigree has been fixed by past 
events, a better approach would be to use A as the parameter in 
place of Θc and to compute the likelihood

P(D; Θm, A) =
􏽘

G

P(D | G; Θm)P(G; A)

=
􏽘

G

􏽙L

i=1

P(Di | Gi; Θm)P(Gi; A),
(57)

where now in equation (57) the independence assumption of gene 
genealogies (given the pedigree) is correct. Theorem 1 is a simple 
example of what we expect will be possible under a variety of 
population models. Intuitively, A can be replaced by the pair 
{Y, A \ Y}, where Y is a list of special events and A \ Y is the re
mainder of the pedigree. In the limiting ancestral process, Y
may need to be preserved while A \ Y can be replaced by a coales
cent model with parameters Θc. For our model, Y would be the 
times and sizes (ψ) of big families, and the coalescent model would 
be the Kingman coalescent. Thus, our results suggest the simpli
fication

P(D; Θm, A) ≈ P(D; Θm, Y, Θc)

=
􏽘

G

􏽙L

i=1

P(Di | Gi; Θm)P(Gi; Y, Θc), (58)

where the approximation is for large N. In the present work, equa
tion (58) has the probabilistic interpretation in Theorem 1, where 
A and the limiting object Y are random outcomes of a population 
process. Then P(Y) could also serve as the prior for Bayesian infer
ence of Y, using equation (58) but with “|” not “; ” for conditioning 
on A and Y. In any case, the pair {Y, Θc} is a much more manage
able variable than A. For many species, it will not be necessary to 
record special events in the limiting model. Without Y, equation 
(58) reduces to traditional coalescent-based inference.

The issues we raise here about pedigrees parallel those in re
cent work on population bottlenecks. Like the trajectories of 
population sizes through time in coalescent hidden Markov mod
els, bottlenecks have traditionally been considered fixed events of 
the past. But models of recurrent bottlenecks have recently been 
considered. A bottleneck is the event that a population ordinarily 
of size N0 has size NB < N0 for a period of time. In Birkner et al.
(2009, Section 6), it was shown that a Ξ-coalescent describes the 
limiting gene-genealogical process for a model with recurrent se
vere bottlenecks, specifically with the bottleneck duration going 
to zero and NB/N0 → 0 as both NB and N0 go to infinity. González 
Casanova et al. (2022) used a similar framework but allowed that 
NB could be finite. They described a new class of Ξ-coalescents 
they called the symmetric coalescent. A model like ours with 
ψ = 1 and random selfing between the parents of the big family 
would give one of these, being identical to a short drastic bottle
neck (González Casanova et al. 2022, Definition 3) with NB = 4 
and our θ and λ corresponding to their α and k(N). But as noted in 
Birkner et al. (2009), Ξ-coalescent models are only obtained for re
current bottlenecks by averaging over the exponential process 
which generates them. When the times and severities of bottle
necks are fixed, the result will depend on these and will not be a 
time-homogeneous Markov process. Against this backdrop of 
similarities, a small but notable difference is that the bottleneck 
models in Birkner et al. (2009) and González Casanova et al. 
(2022) are haploid rather than diploid.

The proof of Theorem 1 uses the idea of two independent copies 
of the coalescent process on the same pedigree. Genetically, these 
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are the gene-genealogies of two independently assorting loci con
ditional on their shared pedigree. Our results suggest a reinterpret
ation of population-genetic models which predict nonzero 
correlations or positive covariances of coalescence times at un
linked loci. Eldon and Wakeley (2008) found that the correlation 
could be positive in a model of recombination and the haploid (or 
gametic) equivalent of big families. Birkner et al. (2013b) extended 
this finding to a diploid model of recombination with big families 
similar to the ones we studied here. It appears that such correla
tions result from averaging over the pedigree. In the simple model 
we considered, they arise from averaging over the times of big fam
ilies, cf. equations (53) and (54). On any fixed pedigree the correl
ation of coalescence times at unlinked loci must be zero.

The comparison with recurrent bottlenecks is apt here as well. 
Schaper et al. (2012) constructed a recurrent-bottleneck model for 
recombination and coalescence at two loci with recombination. 
They note that what is relevant for data is the covariance of co
alescence times conditional on the series bottleneck events in 
the ancestry of the population, not the unconditional covariance 
which averages over these. They showed that the conditional co
variance goes to zero as the recombination parameter goes to in
finity. They also showed, in the Ξ-coalescent limit of Birkner et al. 
(2009) that the covariance could be positive even as the recombin
ation parameter goes to infinity. We note an analogous finding for 
yet another model in Wakeley and Lessard (2003), in which non
zero correlations of coalescence times at unlinked resulted from 
taking the number of subpopulations to infinity in an island migra
tion model, even though for any finite number of subpopulations 
the correlation goes to zero as the recombination parameter tends 
to infinity.

In sum, for a century it has been common practice in popula
tion genetics to compute probabilities of past events by averaging 
over an assumed process of reproduction. What we have shown is 
that when big families occur with some frequency, or more gener
ally when the descendants of a small number of individuals take 
over a sizable fraction of the population in a short period of time, 
this averaging is not justified and can produce spurious results. 
Instead, such extreme outcomes of reproduction should be 
viewed as fixed, and probabilities of coalescence and other events 
conditioned upon them. In light of this, existing multiple-merger 
coalescent models must be reassessed and most likely replaced 
with conditional or quenched models. A comparison with how 
population size has been treated as fixed is of some interest be
cause it too is an outcome of reproduction. In both cases, it is 
when population-genetic models are applied to explain variation 
among loci that the importance of conditioning on past events is 
most readily apparent.

Data availability
Mathematica notebooks containing some calculations, detailed in 
Appendix A, are available at: https://github.com/diamantidisd 
imitris/Bursts-of-coalescence.
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Birkner M, Černý J, Depperschmidt A, Gantert N. 2013c. Directed ran

dom walk on the backbone of an oriented percolation cluster. 
Electron J Probab. 18:1–35. doi:10.1214/EJP.v18-2302.

Birkner M, Liu H, Sturm A. 2018. Coalescent results for diploid ex
changeable population models. Electron J Probab. 23:1–44. doi:
10.1214/18-EJP175.

Blath J, Cronjäger MC, Eldon B, Hammer M. 2016. The site-frequency 
spectrum associated with xi-coalescents. Theor Popul Biol. 110: 
36–50. doi:10.1016/j.tpb.2016.04.002.

Blath J, Kadow S, Ortgiese M. 2014. The largest strongly connected 
component in the cyclical pedigree model of Wakeley et al. 
Theor Popul Biol. 98:28–37. doi:10.1016/j.tpb.2014.10.001.

Bolthausen E, Sznitman A. 2002a. On the static and dynamic points of 
view for certain random walks in random environment. Methods 
Appl Anal. 9(3):345–376. doi:10.4310/MAA.2002.v9.n3.a4.

Bolthausen E, Sznitman A. 2002b. Ten lectures on random media. In: 
DMV-Seminar. Vol. 32. Basel: Birkhäuser (Oberwolfach 
Seminars).

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, 
Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, et al. 
2019. BEAST 2.5: an advanced software platform for Bayesian 
evolutionary analysis. PLoS Comput Biol. 15(4):e1006650. doi:10. 
1371/journal.pcbi.1006650.

Brown WM. 1980. Polymorphism in mitochondrial DNA of humans 
as revealed by restriction endonuclease analysis. Proc Natl 
Acad Sci U S A. 77(6):3605–3609. doi:10.1073/pnas.77.6.3605.

Brown WM, George M, Wilson AC. 1979. Rapid evolution of animal 
mitochondrial DNA. Proc Natl Acad Sci U S A. 76(4):1967–1971. 
doi:10.1073/pnas.76.4.1967.

Cann RL, Stoneking M, Wilson AC. 1987. Mitochondrial DNA and hu
man evolution. Nature. 325(6099):31–36. doi:10.1038/325031a0.

Cannings C. 1974. The latent roots of certain Markov chains arising in 
genetics: a new approach. I. Haploid models. Adv Appl Probab. 

6(2):260–290. doi:10.2307/1426293.
Cavalli-Sforza LL, Edwards AWF. 1967. Phylogenetic analysis: models 

and estimation procedures. Evolution. 21(3):550–570. Also pub
lished as: Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic 
analysis. Models and estimation procedures. Am J Hum Genet 
19(3 Pt 1):233–257. doi:10.1111/j.1558-5646.1967.tb03411.x.

Chang JT. 1999. Recent common ancestors of all present-day indivi
duals. Adv Appl Probab. 31(4):1002–1026. doi:10.1239/aap/ 
1029955256.

Charlesworth B. 2022. Fisher’s historic 1922 paper On the dominance 
ratio. Genetics. 220(3):iyac006. doi:10.1093/genetics/iyac006.

Coron C, Le Jan Y. 2022. Pedigree in the biparental Moran model. J 
Math Biol. 84(6):51. doi:10.1007/s00285-022-01752-0.

Der R, Plotkin JB. 2014. The equilibrium allele frequency distribution 
for a population with reproductive skew. Genetics. 196(4): 
1199–1216. doi:10.1534/genetics.114.161422.

Derrida B, Manrubia SC, Zanette DH. 1999. Statistical properties of 
genealogical trees. Phys Rev Lett. 82:1987–1990. doi:10.1103/ 
PhysRevLett.82.1987.

Derrida B, Manrubia SC, Zanette DH. 2000a. Distribution of repeti
tions of ancestors in genealogical trees. Physica A. 281(1–4): 
1–16. doi:10.1016/S0378-4371(00)00031-5.

Derrida B, Manrubia SC, Zannette DH. 2000b. On the genealogy of a 
population of biparental individuals. J Theor Biol. 203(3): 
303–315. doi:10.1006/jtbi.2000.1095.

Di Rienzo A, Wilson AC. 1991. Branching pattern in the evolutionary 
tree for human mitochondrial DNA. Proc Natl Acad Sci U S A. 
88(5):1597–1601. doi:10.1073/pnas.88.5.1597.

Donnelly P, Kurtz TG. 1999. Particle representations for measure- 

valued population models. Ann Probab. 27(1):166–205. doi:10. 
1214/aop/1022677258.

Donnelly P, Tavaré S, Balding DJ, Griffiths RC. 1996. Estimating the 
age of the common ancestor of men from the ZFY intron. 
Science. 272(5266):1357–1359. doi:10.1126/science.272.5266.1357.

Donnelly P, Wiuf C, Hein J, Slatkin M, Ewens WJ, Kingman JFC. 1999. 
Discussion: recent common ancestors of all present-day individuals. 
Adv Appl Probab. 31(4):1027–1035. doi:10.1239/aap/1029955257.

Dorit RL, Akashi H, Gilbert W. 1995. Absence of polymorphism at the 
ZFY locus on the human Y chromosome. Science. 268(5214): 
1183–1185. doi:10.1126/science.7761836.

Durrett R, Schweinsberg J. 2004. Approximating selective sweeps. 
Theor Popul Biol. 66(2):129–138. doi:10.1016/j.tpb.2004.04.002.

Durrett R, Schweinsberg J. 2005. A coalescent model for the effect of ad
vantageous mutations on the genealogy of a population. Stoch 
Process Their Appl. 115(10):1628–1657. doi:10.1016/j.spa.2005.04.009.

Eldon B. 2020. Evolutionary genomics of high fecundity. Annu Rev 
Genet. 54(1):213–236. doi:10.1146/annurev-genet-021920-095932.

Eldon B, Birkner M, Blath J, Freund F. 2015. Can the site-frequency 
spectrum distinguish exponential population growth from 
multiple-merger coalescents? Genetics. 199(3):841–856. doi:10. 
1534/genetics.114.173807.

Eldon B, Wakeley J. 2008. Linkage disequilibrium under skewed off
spring distribution among individuals in a population. Genetics. 
178(3):1517–1532. doi:10.1534/genetics.107.075200.

Ewens WJ. 1974. A note on the sampling theory for infinite alleles and 
infinite sites models. Theor Popul Biol. 6(2):143–148. doi:10.1016/ 
0040-5809(74)90020-3.

Ewens WJ. 1990. Population genetics theory—the past and the future. 
In: Lessard S, editor. Mathematical and Statistical Developments 
of Evolutionary Theory. Amsterdam: Kluwer Academic 
Publishers. p. 177–227.

Ewens WJ. 2004. Mathematical Population Genetics, Volume I: 
Theoretical Foundations. Berlin: Springer-Verlag.

Ewens WJ, Maruyama T. 1975. A note on the variance of the number 
of loci having a given gene frequency. Genetics. 80(1):221–222. 
doi:10.1093/genetics/80.1.221.

Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. 2013. 
Robust demographic inference from genomic and SNP data. 
PLoS Genet. 9(10):e1003905-1–e1003905-17. doi:10.1371/journal. 
pgen.1003905.

Excoffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, Sousa 
VC. 2021. fastsimcoal2: demographic inference under complex 
evolutionary scenarios. Bioinformatics. 37(24):4882–4885. doi:
10.1093/bioinformatics/btab468.

Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary 
trees from continuous characters. Am J Hum Genet. 25(5):471–492.

Felsenstein J. 1981. Evolutionary trees from gene frequencies and 
quantitative characters: finding maximum likelihood estimates. 
Evolution. 35(6):1229–1242. doi:10.1111/j.1558-5646.1981. 
tb04991.x.

Felsenstein J. 2004. Inferring Phylogenies. Sunderland (MA): Sinauer 
Associates, Inc.

Fisher RA. 1918. The correlation between relatives on the supposition 
of Mendelian inheritance. Trans R Soc Edinb. 52:399–433. doi:10. 
1017/S0080456800012163.

Fisher RA. 1922. On the dominance ratio. Proc R Soc Edinb. 42: 
321–341. doi:10.1017/S0370164600023993.

Fisher RA. 1930. The distribution of gene ratios for rare mutations. 
Proc R Soc Edinb. 50:205–220.

Freund F, Kerdoncuff E, Matuszewski S, Lapierre M, Hildebrandt M, 
Jensen JD, Ferretti L, Lambert A, Sackton TB, Achaz G. 2023. 

Bursts of coalescence within population pedigrees | 17
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/advance-article/doi/10.1093/genetics/iyae030/7614474 by U
niversitaetsbibliothek M

ainz user on 07 M
ay 2024

https://doi.org/10.1214/EJP.v18-2302
https://doi.org/10.1214/18-EJP175
https://doi.org/10.1016/j.tpb.2016.04.002
https://doi.org/10.1016/j.tpb.2014.10.001
https://doi.org/10.4310/MAA.2002.v9.n3.a4
https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1073/pnas.77.6.3605
https://doi.org/10.1073/pnas.76.4.1967
https://doi.org/10.1038/325031a0
https://doi.org/10.2307/1426293
https://doi.org/10.1111/j.1558-5646.1967.tb03411.x
https://doi.org/10.1239/aap/1029955256
https://doi.org/10.1239/aap/1029955256
https://doi.org/10.1093/genetics/iyac006
https://doi.org/10.1007/s00285-022-01752-0
https://doi.org/10.1534/genetics.114.161422
https://doi.org/10.1103/PhysRevLett.82.1987
https://doi.org/10.1103/PhysRevLett.82.1987
https://doi.org/10.1016/S0378-4371(00)00031-5
https://doi.org/10.1006/jtbi.2000.1095
https://doi.org/10.1073/pnas.88.5.1597
https://doi.org/10.1214/aop/1022677258
https://doi.org/10.1214/aop/1022677258
https://doi.org/10.1126/science.272.5266.1357
https://doi.org/10.1239/aap/1029955257
https://doi.org/10.1126/science.7761836
https://doi.org/10.1016/j.tpb.2004.04.002
https://doi.org/10.1016/j.spa.2005.04.009
https://doi.org/10.1146/annurev-genet-021920-095932
https://doi.org/10.1534/genetics.114.173807
https://doi.org/10.1534/genetics.114.173807
https://doi.org/10.1534/genetics.107.075200
https://doi.org/10.1016/0040-5809(74)90020-3
https://doi.org/10.1016/0040-5809(74)90020-3
https://doi.org/10.1093/genetics/80.1.221
https://doi.org/10.1371/journal.pgen.1003905
https://doi.org/10.1371/journal.pgen.1003905
https://doi.org/10.1093/bioinformatics/btab468
https://doi.org/10.1111/j.1558-5646.1981.tb04991.x
https://doi.org/10.1111/j.1558-5646.1981.tb04991.x
https://doi.org/10.1017/S0080456800012163
https://doi.org/10.1017/S0080456800012163
https://doi.org/10.1017/S0370164600023993


Interpreting the pervasive observation of U-shaped site fre

quency spectra. PLoS Genet. 19(3):e1010677-1–e1010677-18. doi:
10.1371/journal.pgen.1010677.

Fu Y, Li W. 1996. Estimating the age of the common ancestor of men 
from the ZFY intron. Science. 272(5266):1356–1357. doi:10.1126/ 
science.272.5266.1356.

Gasbarra D, Pirinen M, Sillanpää MJ, Arjas E. 2007a. Estimating ge
nealogies from linked marker data: a Bayesian approach. BMC 
Bioinformatics. 8(1):411. doi:10.1186/1471-2105-8-411.

Gasbarra D, Pirinen M, Sillanpää MJ, Salmela E, Arjas E. 2007b. 
Estimating genealogies from unlinked marker data: a Bayesian 
approach. Theor Popul Biol. 72(3):305–322. doi:10.1016/j.tpb. 
2007.06.004.

Gasbarra D, Sillanpää MJ, Arjas E. 2005. Backward simulation of an
cestors of sampled individuals. Theor Popul Biol. 67(2):75–83. doi:
10.1016/j.tpb.2004.08.003.

Gernhard T. 2008. The conditioned reconstructed process. J Theor 
Biol. 253(4):769–778. doi:10.1016/j.jtbi.2008.04.005.

González Casanova A, Miró Pina V, Siri-Jégousse A. 2022. The sym
metric coalescent and Wright–Fisher models with bottlenecks. 
Ann Appl Probab, 32(1):235–268. doi:10.1214/21-AAP1676.

Gravel S, Steel M. 2015. The existence and abundance of ghost ances
tors in biparental populations. Theor Popul Biol. 101:47–53. doi:
10.1016/j.tpb.2015.02.002.

Griffiths RC, Marjoram P. 1997. An ancestral recombination graph. 
In: Donnelly P, Tavaré S, editors. Progress in Population 
Genetics and Human Evolution. New York: Springer-Verlag 
(IMA Volumes in Mathematics and its Applications, vol. 87). 
p. 257–270.

Griffiths RC, Tavaré S. 1994. Ancestral inference in population genet
ics. Stat Sci. 9(3):307–319. doi:10.1214/ss/1177010378.

Griffiths RC, Tavaré S. 1998. The age of a mutation in a general co
alescent tree. Commun Stat Stoch Models. 14(1–2):273–295. doi:
10.1080/15326349808807471.

Guez J, Achaz G, Bienvenu F, Cury J, Toupance B, Austerlitz F. 2023. 

Cultural transmission of reproductive success impacts genomic 
diversity, coalescent tree topologies, and demographic infer
ences. Genetics. 223(4):iyad007. doi:10.1093/genetics/iyad007.

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009. 
Inferring the joint demographic history of multiple populations 
from multidimensional SNP frequency data. PLoS Genet. 5(10): 
e1000695-1–e1000695-11. doi:10.1371/journal.pgen.1000695.

Haller BC, Messer PW. 2019. SLiM 3: Forward genetic simulations be
yond the Wright–Fisher model. Mol Biol Evol. 36(3):632–637. doi:
10.1093/molbev/msy228.

Heled J, Drummond AJ. 2009. Bayesian inference of species trees 
from multilocus data. Mol Biol Evol. 27(3):570–580. doi:10.1093/ 
molbev/msp274.

Hudson RR. 1983a. Properties of a neutral allele model with intra
genic recombination. Theor Popul Biol. 23(2):183–201. doi:10. 
1016/0040-5809(83)90013-8.

Hudson RR. 1983b. Testing the consta neutral allele model with pro
tein sequence data. Evolution. 37(1):203–217. doi:10.1111/j.1558- 
5646.1983.tb05528.x.

Ingman M, Kaessmann H, Pääbo S, Gyllensten U. 2000. Mitochondrial 
genome variation and the origin of modern humans. Nature. 
408(6813):708–713. doi:10.1038/35047064.

Kamm J, Terhorst J, Durbin R, Song YS. 2020. Efficiently inferring the 
demographic history of many populations with allele count data. 
J Am Stat Assoc. 115(531):1472–1487. doi:10.1080/01621459.2019. 
1635482.

Karlin S, McGregor J. 1967. The number of mutant forms maintained 
in a population. In: Le Cam LM, Neyman J, editors. Proceedings of 

the Fifth Berkeley Symposium on Mathematical Statistics and 

Probability: Held at the Statistical Laboratory; June 21–July 18, 
1965 and December 27, 1965–January 7, 1966. Berkeley (CA): 
University of California Press. p. 415–538.

Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. 2019. 
Inferring whole-genome histories in large population datasets. 
Nat Genet. 51(9):1330–1338. doi:10.1038/s41588-019-0483-y.

Kimura M. 1969. The number of heterozygous nucleotide sites main
tained in a finite population due to the steady flux of mutations. 
Genetics. 61(4):893–903. doi:10.1093/genetics/61.4.893.

Kingman JFC. 1982. On the genealogy of large populations. J Appl 
Probab. 19(A):27–43. doi:10.2307/3213548.

Ko A, Nielsen R. 2019. Joint estimation of pedigrees and effective 
population size using Markov chain Monte Carlo. Genetics. 
212(3):855–868. doi:10.1534/genetics.119.302280.

Koskela J. 2018. Multi-locus data distinguishes between population 
growth and multiple merger coalescents. Stat Appl Genet Mol 
Biol. 17(3):20170011. doi:10.1515/sagmb-2017-0011.

Kuhner MK, Yamato J, Felsenstein J. 1995. Estimating effective popu
lation size and mutation rate from sequence data using 
Metropolis-Hastings sampling. Genetics. 140(4):1421–1430. doi:
10.1093/genetics/140.4.1421.

Lachance J. 2009. Inbreeding, pedigree size, and the most recent 
common ancestor of humanity. J Theor Biol. 261(2):238–247. 
doi:10.1016/j.jtbi.2009.08.006.

Lambert A, Stadler T. 2013. Birth–death models and coalescent 
point processes: the shape and probability of reconstructed phy
logenies. Theor Popul Biol. 90:113–128. doi:10.1016/j.tpb.2013.10. 
002.

Li H, Durbin R. 2011. Inference of human population history from in
dividual whole-genome sequences. Nature. 475(7357):493–496. 
doi:10.1038/nature10231.

Lundstrom R, Tavaré S, Ward RH. 1992. Estimating substitution rates 
from molecular data using the coalescent. Proc Natl Acad Sci U S 
A. 89(13):5961–5965. doi:10.1073/pnas.89.13.5961.

Malécot G. 1941. Etude mathématique des populations Mendélienne. 
Ann Univ Lyon Sci A. 4:45–60.

Malécot G. 1946. La consanguinité dans une population limitée. C R 
Acad Sci, Paris. 222:841–843.

Malécot G. 1948. Les Mathématiques de l’Hérédité. Masson, Paris. 
Available from https://wellcomecollection.org/works/msfaxgkw. 
Extended translation: The Mathematics of Heredity. W.H. 
Freeman, San Francisco (1969).

Matsen FA, Evans SN. 2008. To what extent does genealogical ances
try imply genetic ancestry? Theor Popul Biol. 74(2):182–190. doi:
10.1016/j.tpb.2008.06.003.

Matuszewski S, Hildebrandt ME, Achaz G, Jensen JD. 2018. 
Coalescent processes with skewed offspring distributions and 
nonequilibrium demography. Genetics. 208(1):323–338. doi:10. 
1534/genetics.117.300499.

McVean GAT. 2002. A genealogical interpretation of linkage disequi
librium. Genetics. 162(2):987–991. doi:10.1093/genetics/162.2.987.

Möhle M. 1998a. A convergence theorem for Markov chains arising in 
population genetics and the coalescent with selfing. Adv Appl 
Probab. 30(2):493–512. doi:10.1239/aap/1035228080.

Möhle M. 1998b. Coalescent results for two-sex population models. 
Adv Appl Probab. 30(2):513–520. doi:10.1239/aap/1035228081.

Möhle M. 1999. The concept of duality and applications to Markov 
processes arising in neutral population genetics models. 
Bernoulli. 5:761–777. doi:10.2307/3318443.

Möhle M, Sagitov S. 2001. A classification of coalescent processes for 
haploid exchangeable population models. Ann Probab. 29(4): 
1547–1562. doi:10.1214/aop/1015345761.

18 | D. Diamantidis et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyae030/7614474 by U

niversitaetsbibliothek M
ainz user on 07 M

ay 2024

https://doi.org/10.1371/journal.pgen.1010677
https://doi.org/10.1126/science.272.5266.1356
https://doi.org/10.1126/science.272.5266.1356
https://doi.org/10.1186/1471-2105-8-411
https://doi.org/10.1016/j.tpb.2007.06.004
https://doi.org/10.1016/j.tpb.2007.06.004
https://doi.org/10.1016/j.tpb.2004.08.003
https://doi.org/10.1016/j.jtbi.2008.04.005
https://doi.org/10.1214/21-AAP1676
https://doi.org/10.1016/j.tpb.2015.02.002
https://doi.org/10.1214/ss/1177010378
https://doi.org/10.1080/15326349808807471
https://doi.org/10.1093/genetics/iyad007
https://doi.org/10.1371/journal.pgen.1000695
https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1093/molbev/msp274
https://doi.org/10.1093/molbev/msp274
https://doi.org/10.1016/0040-5809(83)90013-8
https://doi.org/10.1016/0040-5809(83)90013-8
https://doi.org/10.1111/j.1558-5646.1983.tb05528.x
https://doi.org/10.1111/j.1558-5646.1983.tb05528.x
https://doi.org/10.1038/35047064
https://doi.org/10.1080/01621459.2019.1635482
https://doi.org/10.1080/01621459.2019.1635482
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1093/genetics/61.4.893
https://doi.org/10.2307/3213548
https://doi.org/10.1534/genetics.119.302280
https://doi.org/10.1515/sagmb-2017-0011
https://doi.org/10.1093/genetics/140.4.1421
https://doi.org/10.1016/j.jtbi.2009.08.006
https://doi.org/10.1016/j.tpb.2013.10.002
https://doi.org/10.1016/j.tpb.2013.10.002
https://doi.org/10.1038/nature10231
https://doi.org/10.1073/pnas.89.13.5961
https://wellcomecollection.org/works/msfaxgkw
https://doi.org/10.1016/j.tpb.2008.06.003
https://doi.org/10.1534/genetics.117.300499
https://doi.org/10.1534/genetics.117.300499
https://doi.org/10.1093/genetics/162.2.987
https://doi.org/10.1239/aap/1035228080
https://doi.org/10.1239/aap/1035228081
https://doi.org/10.2307/3318443
https://doi.org/10.1214/aop/1015345761


Molchanov SA. 1994. Lectures on random media. In: Bernard P, 

editor. École d’Été de Probabilités de Saint-Flour—1992. 
Berlin: Springer-Verlag (Lectures Notes in Mathematics, 
vol. 1581). p. 242–411. Available from https://doi.org/10.1007/ 
BFb0073871.

Nielsen R. 2000. Estimation of population parameters and recombin
ation rates from single nucleotide polymorphisms. Genetics. 
154(2):931–942. doi:10.1093/genetics/154.2.931.

Padmadisastra S. 1988. Estimating divergence times. Theor Popul 
Biol. 34(3):297–319. doi:10.1016/0040-5809(88)90026-3.

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, 
Genschoreck T, Webster T, Reich D. 2012. Ancient admixture in 
human history. Genetics. 192(3):1065–1093. doi:10.1534/ 
genetics.112.145037.

Peter BM. 2016. Admixture, population structure, and F-statistics. 
Genetics. 202(4):1485–1501. doi:10.1534/genetics.115.183913.

Pitman J. 1999. Coalescents with multiple collisions. Ann Probab. 
27(4):1870–1902. doi:10.1214/aop/1022874819.

Ralph P, Thornton K, Kelleher J. 2020. Efficiently summarizing rela
tionships in large samples: a general duality between statistics 
of genealogies and genomes. Genetics. 215(3):779–797. doi:10. 
1534/genetics.120.303253.

Ralph PL. 2019. An empirical approach to demographic inference 
with genomic data. Theor Popul Biol. 127:91–101. doi:10.1016/j. 
tpb.2019.03.005.

Rannala B, Yang Z. 2003. Bayes estimation of species divergence 
times and ancestral population sizes using DNA sequences 
from multiple loci. Genetics. 164(4):1645–1656. doi:10.1093/ 
genetics/164.4.1645.

Rohde DLT, Olson S, Chang JT. 2004. Modelling the recent common 
ancestry of all living humans. Nature. 431(7008):562–566. doi:
10.1038/nature02842.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna 
S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: 
efficient Bayesian phylogenetic inference and model choice 

across a large model space. Syst Biol. 61(3):539–542. doi:10.1093/ 
sysbio/sys029.

Sagitov S. 1999. The general coalescent with asynchronous mergers 
of ancestral lines. J Appl Probab. 36(4):1116–1125. doi:10.1239/ 
jap/1032374759.

Sagitov S. 2003. Convergence to the coalescent with simultaneous 
multiple mergers. J Appl Probab. 40(4):839–854. doi:10.1239/jap/ 
1067436085.

Sainudiin R, Thatte B, Véber A. 2016. Ancestries of a recombining dip
loid population. J Math Biol. 72(1–2):363–408. doi:10.1007/s00285- 
015-0886-z.

Sawyer SA, Hartl DL. 1992. Population genetics of polymorphism and 
divergence. Genetics. 132(4):1161–1176. doi:10.1093/genetics/132. 
4.1161.

Schaper E, Eriksson A, Rafajlovic M, Sagitov S, Mehlig B. 2012. Linkage 
disequilibrium under recurrent bottlenecks. Genetics. 190(1): 
217–229. doi:10.1534/genetics.111.134437.

Schweiger R, Durbin R. 2023. Ultrafast genome-wide inference of 
pairwise coalescence times. Genome Res. 33:1023–1031. doi:10. 
1101/gr.277665.123.

Schweinsberg J. 2000. Coalescents with simultaneous multiple colli
sions. Electron J Probab. 5:1–50. doi:10.1214/EJP.v5-68.

Schweinsberg J, Durrett R. 2005. Random partitions approximating 
the coalescence of lineages during a selective sweep. Ann Appl 
Probab. 15(3):1591–1651. doi:10.1214/105051605000000430.

Sheehan S, Harris K, Song YS. 2013. Estimating variable effective 
population sizes from multiple genomes: a sequentially Markov 

conditional sampling distribution approach. Genetics. 194(3): 

647–662. doi:10.1534/genetics.112.149096.
Sjödin P, Kaj I, Krone S, Lascoux M, Nordborg M. 2005. On the mean

ing and existence of an effective population size. Genetics. 169(2): 
1061–1070. doi:10.1534/genetics.104.026799.

Slatkin M. 1991. Inbreeding coefficients and coalescence times. 
Genet Res. 58(2):167–175. doi:10.1017/S0016672300029827.

Speidel L, Forest M, Shi S, Myers SR. 2019. A method for genome-wide 
genealogy estimation for thousands of samples. Nat Genet. 51(9): 
1321–1329. doi:10.1038/s41588-019-0484-x.

Spence JP, Kamm JA, Song YS. 2016. The site frequency spectrum for 
general coalescents. Genetics. 202(4):1549–1561. doi:10.1534/ 
genetics.115.184101.

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 
2018. Bayesian phylogenetic and phylodynamic data integration 
using BEAST 1.10. Virus Evol. 4(1):vey016. doi:10.1093/ve/vey016.

Tajima F. 1983. Evolutionary relationship of DNA sequences in finite 
populations. Genetics. 105(2):437–460. doi:10.1093/genetics/105. 
2.437.

Tellier A, Lemaire C. 2014. Coalescence 2.0: a multiple branching of 
recent theoretical developments and their applications. Mol 
Ecol. 23(11):2637–2652. doi:10.1111/mec.12755.

The 1000 Genomes Project Consortium. 2015. A global reference for 
human genetic variation. Nature. 526(7571):68–74. doi:10.1038/ 
nature15393.

Tyukin A. 2015. Quenched limits of coalescents in fixed pedigrees [mas
ter’s thesis]. [Mainz (Germany)]: Johannes-Gutenberg-Universität.

Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. 1989. 
Mitochondrial DNA sequences in single hairs from a southern 
African population. Proc Natl Acad Sci U S A. 86(23):9350–9354. 
doi:10.1073/pnas.86.23.9350.

Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC. 1991. 
African populations and the evolution of human mitochondrial 
DNA. Science. 253(5027):1503–1507. doi:10.1126/science.1840702.

Wakeley J. 1999. Nonequilibrium migration in human history. 

Genetics. 153(4):1863–1871. doi:10.1093/genetics/153.4.1863.
Wakeley J. 2009. Coalescent Theory: An Introduction. Greenwood 

Village (CO): Roberts & Company Publishers. Current publisher: 
New York (NY): Macmillan Learning.

Wakeley J, King L, Low BS, Ramachandran S. 2012. Gene genealogies 
within a fixed pedigree, and the robustness of Kingman’s coales
cent. Genetics. 190(4):1433–1445. doi:10.1534/genetics.111.135574.

Wakeley J, King L, Wilton PR. 2016. Effects of the population pedigree 
on genetic signatures of historical demographic events. Proc 
Natl Acad Sci U S A. 113(29):7994–8001. doi:10.1073/pnas. 
1601080113.

Wakeley J, Lessard S. 2003. Theory of the effects of population struc
ture and sampling on patterns of linkage disequilibrium applied 
to genomic data from humans. Genetics. 164(3):1043–1053. doi:
10.1093/genetics/164.3.1043.

Wang K, Mathieson I, O’Connell J, Schiffels S. 2020. Tracking human 
population structure through time from whole genome se
quences. PLoS Genet. 16(3):e1008552-1–e1008552-24. doi:10. 
1371/journal.pgen.1008552.

Ward RH, Frazier BL, Dew-Jager K, Pääbo S. 1991. Extensive mito
chondrial diversity within a single Amerindian tribe. Proc Natl 
Acad Sci U S A. 88(19):8720–8724. doi:10.1073/pnas.88.19.8720.

Watterson GA. 1985. Estimating species divergence times using 
multi-locus data. In: Ohta T, Aoki K, editors. Population 
Genetics and Molecular Evolution: Papers Marking the Sixtieth 
Birthday of Motoo Kimura. Tokyo: Japan Scientific Societies 
Press; Berlin: Springer-Verlag. p. 163–183.

Bursts of coalescence within population pedigrees | 19
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/advance-article/doi/10.1093/genetics/iyae030/7614474 by U
niversitaetsbibliothek M

ainz user on 07 M
ay 2024

https://doi.org/10.1007/BFb0073871
https://doi.org/10.1007/BFb0073871
https://doi.org/10.1093/genetics/154.2.931
https://doi.org/10.1016/0040-5809(88)90026-3
https://doi.org/10.1534/genetics.112.145037
https://doi.org/10.1534/genetics.112.145037
https://doi.org/10.1534/genetics.115.183913
https://doi.org/10.1214/aop/1022874819
https://doi.org/10.1534/genetics.120.303253
https://doi.org/10.1534/genetics.120.303253
https://doi.org/10.1016/j.tpb.2019.03.005
https://doi.org/10.1016/j.tpb.2019.03.005
https://doi.org/10.1093/genetics/164.4.1645
https://doi.org/10.1093/genetics/164.4.1645
https://doi.org/10.1038/nature02842
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1239/jap/1032374759
https://doi.org/10.1239/jap/1032374759
https://doi.org/10.1239/jap/1067436085
https://doi.org/10.1239/jap/1067436085
https://doi.org/10.1007/s00285-015-0886-z
https://doi.org/10.1007/s00285-015-0886-z
https://doi.org/10.1093/genetics/132.4.1161
https://doi.org/10.1093/genetics/132.4.1161
https://doi.org/10.1534/genetics.111.134437
https://doi.org/10.1101/gr.277665.123
https://doi.org/10.1101/gr.277665.123
https://doi.org/10.1214/EJP.v5-68
https://doi.org/10.1214/105051605000000430
https://doi.org/10.1534/genetics.112.149096
https://doi.org/10.1534/genetics.104.026799
https://doi.org/10.1017/S0016672300029827
https://doi.org/10.1038/s41588-019-0484-x
https://doi.org/10.1534/genetics.115.184101
https://doi.org/10.1534/genetics.115.184101
https://doi.org/10.1093/ve/vey016
https://doi.org/10.1093/genetics/105.2.437
https://doi.org/10.1093/genetics/105.2.437
https://doi.org/10.1111/mec.12755
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1073/pnas.86.23.9350
https://doi.org/10.1126/science.1840702
https://doi.org/10.1093/genetics/153.4.1863
https://doi.org/10.1534/genetics.111.135574
https://doi.org/10.1073/pnas.1601080113
https://doi.org/10.1073/pnas.1601080113
https://doi.org/10.1093/genetics/164.3.1043
https://doi.org/10.1371/journal.pgen.1008552
https://doi.org/10.1371/journal.pgen.1008552
https://doi.org/10.1073/pnas.88.19.8720


Weiss G, von Haeseler A. 1996. Estimating the age of the common an

cestor of men from the ZFY intron. Science. 272(5266):1359–1360. 
doi:10.1126/science.272.5266.1359.

Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, 
Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage 
RD, et al. 1985. Mitochondrial DNA and two perspectives on evo
lutionary genetics. Biol J Linn Soc. 26(4):375–400. doi:10.1111/j. 
1095-8312.1985.tb02048.x.

Wilton PR, Baduel P, Landon MM, Wakeley J. 2017. Population struc
ture and coalescence in pedigrees: comparisons to the structured 
coalescent and a framework for inference. Theor Popul Biol. 115: 
1–12. doi:10.1016/j.tpb.2017.01.004.

Wohns AW, Wong Y, Ben J, Akbari A, Mallick S, Pinhasi R, Patterson 
N, Reich D, Kelleher J, McVean G. 2022. A unified genealogy of 
modern and ancient genomes. Science. 375(6583):eabi8264. doi:
10.1126/science.abi8264.

Wolfram Research, Inc. 2022. Mathematica, Version 13.1.
Wollenberg K, Avise JC. 1998. Sampling properties of genealogical 

pathways underlying population pedigrees. Evolution. 52(4): 
957–966. doi:10.1111/j.1558-5646.1998.tb01825.x.

Wooding S, Rogers A. 2002. The matrix coalescent and an application 
to human single-nucleotide polymorphisms. Genetics. 161(4): 
1641–1650. doi:10.1093/genetics/161.4.1641.

Wright S. 1921a. Systems of mating. I. The biometric relations be
tween parent and offspring. Genetics. 6(2):111–123. doi:10.1093/ 
genetics/6.2.111.

Wright S. 1921b. Systems of mating. II. The effects of inbreeding on 
the genetic composition of a population. Genetics. 6(2):124–143. 
doi:10.1093/genetics/6.2.124.

Wright S. 1921c. Systems of mating. III. Assortative mating based on 
somatic resemblance. Genetics. 6(2):144–161. doi:10.1093/ 
genetics/6.2.144.

Wright S. 1921d. Systems of mating. IV. The effects of selection. 
Genetics. 6(2):162–166. doi:10.1093/genetics/6.2.162.

Wright S. 1921e. Systems of mating. V. General considerations. 

Genetics. 6(2):167–178. doi:10.1093/genetics/6.2.167.
Wright S. 1922. Coefficients of inbreeding and relationship. Am Nat. 

56(645):330–338. doi:10.1086/279872.
Wright S. 1931. Evolution in Mendelian populations. Genetics. 16(2): 

97–159. doi:10.1093/genetics/16.2.97.
Yang Z. 2002. Likelihood and Bayes estimation of ancestral popula

tion sizes in hominoids using data from multiple loci. Genetics. 
162(4):1811–1823. doi:10.1093/genetics/162.4.1811.

Zhang BC, Biddanda A, Palamara PF. 2023. Biobank-scale inference of 
ancestral recombination graphs enables genealogical analysis of 
complex traits. Nat Genet. 55(5):768–776. doi:10.1038/s41588- 
023-01379-x.

Appendix A
Joint diploid ancestral process
Recall the joint ancestral process 􏽥M describes the lineage dynam
ics of two conditionally independent samples of size 2. In the The 
joint diploid ancestral process with 10 states is Markovian section we 
establish its Markov property. This property should hold for any 
population model in which the outcomes of reproduction in differ
ent generations are independent. In the Transition matrix for a gen
eration with a big family section, we provide its transition matrix for 
a generation with a big family and in the Two extremes for the sizes of 
big families section, we study two extreme cases, ψ = 0 and ψ = 1. 
In the former case, we recover the transition matrix of the joint 
diploid ancestral process for a Wright–Fisher generation and in 

the latter we consider the case when the highly reproductive cou
ple replaces the entire population.

The joint diploid ancestral process with 10 states is 
Markovian
Recall the state space of the process 􏽥M = (􏽥Mg)g∈Z≥0 

is 
S = {ξ(4)00 , ξ(3)00 , . . . , ξΔ} which has 10 states including the state ξΔ 

where one, the other or both pairs of lineages have coalesced.
Fix a pair of states (ξ, η) ∈ S2. It holds that

P(N)(􏽥Mg+1 = η ∣ 􏽥Mg = ξ, {􏽥Mk}g− 1
k=0) =

􏽘

α(g)
P(N)(􏽥Mg+1 = η ∣

􏽥Mg = ξ, α(g), {􏽥Mk}g− 1
k=0)P

(N)(α(g) ∣ 􏽥Mg = ξ, {􏽥Mk}g− 1
k=0)

(A1)

=
􏽘

α(g)∈Aξ,η

P(N)(􏽥Mg+1 = η ∣ 􏽥Mg = ξ, α(g))P(N)(α(g)), (A2)

where the last sum 
􏽐

α(g)∈Aξ,η 
is over all possible parent assignments 

α(g) that belong to the pattern Aξ,η described in Tables A1–A3. These 
are exactly the parent assignments for which transition to η is pos

sible in the sense that P(N)(􏽥Mg+1 = η ∣ 􏽥Mg = ξ, α(g)) > 0 if and only if 

α(g) ∈ Aξ,η.
In the last equality above, we noted that a parent assignment 

α(h) between generations g and g+ 1 is independent of {􏽥Mk}gk=0 

and so P(N)(α(g) ∣ 􏽥Mg = ξ, {􏽥Mk}g− 1
k=0) = P(N)(α(g)). Also, P(N)(􏽥Mg+1 = η ∣ 

􏽥Mg = ξ, α(g), {􏽥Mk}g− 1
k=0) = P(N)(􏽥Mg+1 = η ∣ 􏽥Mg = ξ, α(g)) because it is 

determined entirely by Mendelian randomness and not by the 
population model (whether it is Wright–Fisher or something 
else). This conditional probability is computed in Tables A4–A10, 
and we only need to compute this for those α(g) in patterns whose 
probability is of order O(1N) or larger in view of Möhle (1998a, 
Lemma 1).

In particular, we have shown that the number 
􏽥π(N)ξ,η :=P(N)(􏽥Mg+1 = η ∣ 􏽥Mg = ξ, {􏽥Mk}g− 1

k=0) does not depend on the 
“history” {􏽥Mk}g− 1

k=0. Hence, the process 􏽥M is Markovian.

Transition matrix for a generation with a big family
For any ξ ∈ S, let 􏿻rξ = (􏽥π(N)ξ,η )η∈S be the ξth row of 􏽦ΠN. By equation 
(A2), each row of 􏽦ΠN is computed as

􏿻rξ = Aξ · 􏿻pξ,

where Aξ is given by the appropriate matrix in Tables A4–A10 cor

responding to ξ, and 􏿻pξ contains the probabilities of the patterns 

from Tables A1–A3 used in all the transitions from ξ to η ∈ S. In 

a generation with a big family, 􏽥ΠN is given as

􏽧ΠBF
N =

rBF
ξ(4)00

..

.

rBF
ξΔ

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠+ O(N− 2), (A3)

where rBF
ξ in equation (A3) is the row of 􏽥ΠBF

N that corresponds to ini

tial state ξ up to an error of order O(N− 2), given in equations 

(A4)–(A8). For example, rBF
ξ(1)11 

is derived by multiplying the matrix 

Aξ(1)11 
given in Table A4 by the vector column 􏿻p :=

( 1− ψ
N , ψ+ (1 − ψ)× 

(1 − 1
N)
􏼁T on the right. The calculations for each row are available 

at https://github.com/diamantidisdimitris/Bursts-of-coalescence
in the PiBF row derivation print file and can be reproduced in the 
corresponding Mathematica notebook PiBF row derivation
print notebook, where Mathematica version 13.1.0 (Wolfram 
Research, Inc. 2022) was used. Its rows are given as
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8N − 1
4 (ψ − 1)ψ2

7(ψ− 1)ψ3

8N − 1
8 (ψ − 2)ψ3

− 11ψ4+23ψ3 − ψ2 − 15ψ+4
8N − 1

4 (ψ − 1)ψ2

7(ψ− 1)ψ3

8N − 1
8 (ψ − 2)ψ3

(ψ2 − 3ψ+2)ψ2

16N +
ψ4

32
ψ4

32 −
(ψ− 1)ψ3

16N
− 351ψ4+1383ψ3 − 1794ψ2+754ψ+8

8N − 1
16 ψ2(ψ2 − 8)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

. (A8)

Two extremes for the sizes of big families
Degenerate case of no offspring, ψ = 0. When a Wright–Fisher gen
eration is taking place, denote 􏽥ΠN by 􏽥ΠWF

N . The matrix 􏽥ΠWF
N can be 

recovered from 􏽥ΠBF
N by setting ψ = 0 up to a term of order O(N− 2). 

The additional O(N− 2) term represents cases in which both pairs 
of lineages coalesce and which become negligible in the limit. 
Note there is a single case of nonnegligible double coalescence in 
the O(N− 1) transition ξ(2)00 → ξΔ. The matrix 􏽥ΠWF

N is given as

Π̃WF
N =

S

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)10

ξ(2)10

ξ(3)01

ξ(2)01

ξ(2)11

ξ(1)11

ξΔ

ξ(4)00 ξ(3)00 ξ(2)00 ξ(3)10 ξ(2)01 ξ(3)01 ξ(2)01 ξ(2)11 ξ(1)11 ξΔ

1 − 6
N

4
N 0 1

2N 0 1
2N 0 0 1

N

1
2 −

3
N

1
2+

1
2N 0 1

2N
1

2N
1

2N
1

2N 0 0 1
2N

1
4 −

3
2N

1
2 −

1
2N

1
4+

1
4N

1
8N

1
4N

1
8N

1
4N 0 1

16N
15

16N

1 − 6
N

4
N 0 1

2N 0 1
2N 0 0 0 1

N

0 1 − 3
N

1
N 0 1

2N 0 1
N 0 0 1

2N

1 − 6
N

4
N 0 1

2N 0 1
2N 0 0 0 1

N

0 1 − 3
N

1
N 0 1

N 0 1
2N 0 0 1

2N

1 − 6
N

4
N 0 1

2N 0 1
2N 0 0 0 1

N

0 0 1 − 1
N 0 0 0 0 0 1

4N
3

4N

0 0 0 0 0 0 0 0 0 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+O 1
N2

( 􏼁 .

(A9)

Offspring make up the whole population, ψ = 1
When ψ = 1, the highly reproductive pair gives birth to the entire 
next population. This is the case of pure Mendelian randomness 
within a single family with two parents. The matrix 􏽥ΠBF

N is then 
equal to

S

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

ξ(4)00 ξ(3)00 ξ(2)00 ξ(3)10 ξ(2)10 ξ(3)01 ξ(2)01 ξ(2)11 ξ(1)11 ξΔ

0 0 1
4 0 1

8 0 1
8

1
32

1
32

7
16

0 0 1
4 0 1

8 0 1
8

1
32

1
32

7
16

0 0 1
4 0 1

8 0 1
8

1
32

1
32

7
16

0 0 1
2 0 0 0 1

4 0 0 1
4

0 0 1
2 0 0 0 1

4 0 0 1
4

0 0 1
2 0 1

4 0 0 0 0 1
4

0 0 1
2 0 1

4 0 0 0 0 1
4

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A10)

The entries of the matrix above can be explained in terms of 
Mendel’s laws of independent segregation and independent as
sortment, given that all individuals have the same two parents. 

For example, in the first row the initial state is ξ(4)00 : all four lineages 

in distinct individuals. The transition to state ξ(1)11 , where all four 

lineages are in the same individual but have not coalesced, takes 
place with probability 1/32 and is computed as follows. Each lin
eage chooses a parent with probability 1/2, then chooses a gene 
copy within that parent also with probability 1/2. All four lineages 
choose the same parent (which can be either of the two) with prob
ability 1/8. Then each pair independently chooses distinct gene 
copies (i.e. does not coalesce) with probability 1/2.

Limiting behavior of the joint diploid ancestral process
The joint diploid ancestral process has transition matrix

􏽥ΠN :=(1 − αN)􏽥ΠWF
N + αN􏽥ΠBF

N . (A11)

One can write

􏽥ΠWF
N = 􏽥AWF +

1
N
􏽥BWF + o

􏼐 1
N

􏼑
, (A12)

where

Ã
WF

:=

S
ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)10

ξ(2)10

ξ(3)01

ξ(2)01

ξ(2)11

ξ(1)11

ξΔ

ξ(4)00 ξ(3)00 ξ(2)00 ξ(3)10 ξ(2)10 ξ(3)01 ξ(2)01 ξ(2)11 ξ(1)11 ξΔ

1 0 0 0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0 0 0 0

1
4 0 1

2
1
4 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A13)

and

B̃
WF

:=

S

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)10

ξ(2)10

ξ(3)01

ξ(2)01

ξ(2)11

ξ(1)11

ξΔ

ξ(4)00 ξ(3)00 ξ(2)00 ξ(3)10 ξ(2)10 ξ(3)01 ξ(2)01 ξ(2)11 ξ(1)11 ξΔ

− 6 4 0 1
2 0 1

2 0 0 0 1

− 3 1
2 0 1

2
1
2

1
2

1
2 0 0 1

2

− 3
2 −

1
2

1
4

1
8

1
4

1
8

1
4 0 1

16
15
16

− 6 4 0 1
2 0 1

2 0 0 0 1

0 − 3 1 0 1
2 0 1 0 0 1

2

− 6 4 0 1
2 0 1

2 0 0 0 1

0 − 3 1 0 1 0 1
2 0 0 1

2

− 6 4 0 1
2 0 1

2 0 0 0 1

0 0 − 1 0 0 0 0 0 1
4

3
4

0 0 0 0 0 0 0 0 0 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A14)

Similarly, we split

􏽥ΠBF
N =

􏽥ABF +
1
N
􏽥BBF + o

􏼐 1
N

􏼑
(A15)

with

􏽥ABF = (r(1)
ξ(4)00

, . . . , r(1)ξΔ
)T, 􏽥BBF =

1
N
(r(2)

ξ(4)00

, . . . , r(2)ξΔ
)T (A16)
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defined as r(1)ξ := limN→∞ rBF
ξ and r(2)ξ := limN→∞ N · (rBF

ξ − r(1)ξ ) for all ξ ∈ S. We provide only the rows of 􏽥ABF since those are the only ones we 

will need for the subsequent computations. In particular those are given as

r(1)
ξ(1)11

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

0

0

1

0

0

0

0

0

0

0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, r(1)
ξ(2)11

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(2)11

ξΔ

1 − ψ2

0

ψ2

0

0

0

0

0

0

0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, r(1)
ξ(2)10

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

0

1 − ψ2

ψ2

2

0
ψ2

4

0

0

0

0
ψ2

4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, r(1)
ξ(3)10

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

3ψ3

2 −
5ψ2

2 +1

2ψ2(1 − ψ)
ψ3

2
ψ2 − ψ3

4
ψ3

4

0

0

0

0
ψ2

4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, (A17)

r(1)
ξ(2)01

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

0

1 − ψ2

ψ2

2

0

0

0

ψ2

4

0

0

ψ2

4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, r(1)
ξ(3)01

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(2)11

ξΔ

3ψ3

2 −
5ψ3

2 +1

2ψ2(1 − ψ)
ψ3

2

ψ2 − ψ3

4

0

0

ψ3

4

0

0

ψ2

4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, r(1)
ξ(2)00

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

1
4 −

ψ2

4
1
2 −

ψ2

2

1
4

0

ψ2

8

0

ψ2

8
ψ2

32
ψ2

32

7ψ2

16

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, (A18)

r(1)
ξ(3)00

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

ψ3 −
3ψ2

2 +
1
2

1
2 −

ψ3

2
ψ2

2 −
ψ3

4
ψ2

8 −
ψ3

8
ψ2

8
ψ2

8 −
ψ3

8
ψ2

8
ψ3

32
ψ3

322
ψ2

2 −
ψ3

16

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, and r(1)
ξ(4)00

=

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)01

ξ(2)01

ξ(3)10

ξ(2)10

ξ(2)11

ξ(1)11

ξΔ

(2ψ+ 1)(ψ − 1)2

− 2(ψ − 1)ψ2

ψ4

4
(1− ψ)ψ2

4

(2− ψ)ψ3

8
(1− ψ)ψ2

4
(2− ψ)ψ3

8
ψ4

32
ψ4

32
ψ2(8− ψ2)

16

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

. (A19)

Consider now the matrices 􏽥A := limN→∞ 􏽥ΠN = 􏽥AWF and 􏽥B(θ)N :=Nθ(􏽥ΠN − 􏽥A). We see from equation (A13) that

P̃ := lim
m→∝

Ã
m
=

S

ξ(4)00

ξ(3)00

ξ(2)00

ξ(3)10

ξ(2)10

ξ(3)01

ξ(2)01

ξ(2)11

ξ(1)11

ξΔ

ξ(4)00 ξ(3)00 ξ(2)00 ξ(3)10 ξ(2)10 ξ(3)01 ξ(2)01 ξ(2)11 ξ(1)11 ξΔ

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A20)
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In fact, 􏽥A is the transition matrix of a Markov chain on S =

{ξ(4)00 , ξ(3)00 , . . . , ξΔ} with two absorbing states ξ(4)00 and ξΔ; further

more, ξ(4)00 is reached from every ξ ∈ S \ {ξΔ}. Denoting 􏽥B(θ)N :=N(􏽥ΠN −

􏽥A)we can write 􏽥ΠN = 􏽥A+ 1
N
􏽥B(θ)N , for αN = λ/Nθ and θ ∈ (0, 1]. Also let

􏽥B(θ) := lim
N→∞

􏽥B(θ)N =
λ(􏽥ABF − 􏽥AWF), if θ ∈ (0, 1)
λ(􏽥ABF − 􏽥AWF) +􏽥BWF, if θ = 1,

􏼚

and observe that the first nine rows of

􏽥G(θ) := lim
N→∞

􏽥P􏽥B(θ)N
􏽥P =􏽥P􏽥B(θ)􏽥P (A21)

are identical and equal to

− 1 − λ
ψ2

2
−

ψ4

16

􏼒 􏼓

, 0, 0, . . . , 0, 1+ λ
ψ2

2
−

ψ4

16

􏼒 􏼓􏼒 􏼓

,

when θ = 1, and equal to

− λ
ψ2

2
−

ψ4

16

􏼒 􏼓

, 0, 0, . . . , 0, λ
ψ2

2
−

ψ4

16

􏼒 􏼓􏼒 􏼓

,

when θ ∈ (0, 1). The last row of G(θ) is equal to (0, 0, . . . , 0) for all 

θ ∈ (0, 1]. Note that for computations involving 􏽥G(θ), we can effect
ively collapse the state space S into two points: ξΔ and S \ {ξΔ}. Now 
we have all the required terms to invoke Möhle (1998a, Lemma 1) 

for the proof of Lemma A1. We note that supN ‖
􏽥B(θ)N ‖ < ∞, where 

for any matrix K = (kij)i,j, the norm ‖K‖ :=maxi
􏽐

j |kij| is used. 

The calculations for Lemma A1 are available at https://github. 
com/diamantidisdimitris/Bursts-of-coalescence in the Lemma
2 second moment print file. The computations can be reproduced 
using the Lemma 2 second moment notebook Mathematica 
notebook, version 13.1.0 (Wolfram Research, Inc. 2022).

Lemma A1 Let τ and τ′ be the coalescent times of the two pairs of genes 
that are conditionally independent given A(N,2). Suppose the initial distri
bution 􏿻p0 of 􏽥M0 puts zero mass on state ξΔ. Then for all 0 < t ≤ t′, as 
N→∞,

P(N)(τ > [tNθ], τ′ > [t′Nθ]) →

exp − λt ψ2

2 −
ψ4

16

􏼐 􏼑
− λ ψ2

4 (t
′ − t)

􏽮 􏽯
, if θ ∈ (0, 1),

exp − 1+ λ ψ2

2 −
ψ4

16

􏼐 􏼑􏼐 􏼑
t − 1

2+ λ ψ2

4

􏼐 􏼑
(t′ − t)

􏽮 􏽯
, if θ = 1.

⎧
⎨

⎩

(A22)

Proof. We first establish the result for the case t = t′, and then 
strengthen it to the general case t ≤ t′ by using the Markov 
property.

Let 􏿻p0 = (0, 0, 1, 0, . . . , 0) be the 1 × 13 row vector represent
ing the distribution of 􏽥M0, which corresponds to the initial distri
bution of the Markov chain. Then for each N ∈ N and each 
generation g ∈ Z≥0,

P(N)(τ > g, τ′ > g) = 􏿻p0
􏽥Πg

N (1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T, (A23)

where 􏽥ΠN was defined in equation (A11). Setting g = [tNθ] in equa
tion (A23), an application of Möhle (1998a, Lemma 1) gives

lim
N→∞

􏿻p0
􏽥Π[tNθ ]

N (1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T

= 􏿻p0
􏽥Pet􏽥G (1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T. (A24)

Substituting 􏽥P from equation (A20) and 􏽥G(θ) from equation (A21), 
the right-hand side of (A24) is equal to

􏿻p0
􏽥Pet􏽥G (1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T (A25)

=
e− λt(ψ

2

2 −
ψ4

16), if θ ∈ (0, 1),

e− te− λt(ψ
2

2 −
ψ4

16), if θ = 1,

􏼨

(A26)

for any 􏿻p0 in the set I
′

:={(x1, . . . , x13) ∈ [0, 1]13 : 
􏽐12

i=1 xi = 1, x13 = 0}. We have shown that

lim
N→∞

P(N)(τ > [tNθ], τ′ > [tNθ]) =
e− λt(ψ

2

2 −
ψ4

16), if θ ∈ (0, 1),

e− te− λt(ψ
2

2 −
ψ4

16), if θ = 1.

􏼨

(A27)

For each N ∈ N and generations 0 ≤ g ≤ g′, by the Markov property,

P(N)(τ > g, τ′ > g′) = E
(N)
􏽥M0

[1{τ>g} 1{τ′>g′}]

= E
(N)
􏽥M0

[1{τ>g} 1{τ′>g} P
(N)
􏽥Mg

(τ > g′ − g)]. (A28)

Set g = [tNθ] and g′ = [t′Nθ]. Note that 􏽥Mg ∈ I :={(c, 1 − c, 0) ∈ 

[0, 1]3 : c ∈ [0, 1]} when τ > g. Hence, by Remark 1 and Lemma 1,

lim
N→∞

P
(N)
􏽥Mg

(τ > g′ − g) =
e− λψ2

4 (t
′ − t) when θ ∈ (0, 1)

e− (
1
2+λψ2

4 )(t
′ − t) when θ = 1.

􏼨

Putting this into equation (A28) and using equation (A27), we ob
tain the desired equation (A22).                                                   □

Supporting lemmas
The second step in the proof of Theorem 1 was the computation of 
equation (24) for θ = 1 and of (37) for θ ∈ (0, 1). An important step 
in those calculations was to establish equation (33). Lemma A2 be
low establishes (33). Similarly to equation (16), for each g ∈ Z≥0 we 
let FN(g) :=P

(N)
A(N,2)
(τ > g) and GN(g) :=P

(N)
HN
(τ > g).

Lemma A2 Recall the definition of Πmid
N in equation (34). For all g ∈ N, 

ψ ∈ (0, 1] and N ≥ 2 and initial distribution 􏿻v0 (represented as a 1 × 3 
row vector),

E(N) GN(g) 1 −
ψ2

4

􏼒 􏼓HN(g)
􏼢 􏼣

= 􏿻v0(Πmid
N )

g(1, 1, 0)T.

Proof. By the law of total expectation,

E(N) GN(g) 1 −
ψ2

4

􏼒 􏼓HN(g)
􏼢 􏼣

= E(N) P
(N)
HN
(τ > g) 1 −

ψ2

4

􏼒 􏼓HN(g)
􏼢 􏼣

=
􏽘g

k=0

P(N)(τ > g ∣ HN(g) = k) 1 −
ψ2

4

􏼒 􏼓k

P(N)(HN(g) = k).

(A29)

Given g generations, k of which being generations with big fam
ilies, the total number of arrangements of those events in the 
pedigree is equal to gk. Given k, the arrangement is uniform on 
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Wk, the space of all possible arrangements of k big families within 

g generations. Denote each such arrangement by 􏿻t. Let Π􏿻tN be the 

product of g terms, each term being either ΠWF
N or ΠBF

N . The order 

of the terms (from left to right) is determined by the vector 􏿻t so 
that whenever a Wright–Fisher generation is taking place the cor

responding factor in the product is ΠWF
N and ΠBF

N otherwise. Hence, 
the conditional probability in equation (A29) is equal to

P(N)(τ > g ∣ HN(g) = k) =
1
gk

􏽘

􏿻t∈Wk

P(N)(τ > g |􏿻t) (A30)

=
1
gk

􏽘

􏿻t∈Wk

􏿻v0 Π􏿻tN (1, 1, 0)T, (A31)

where equation (A30) is true by the conditional law of total prob
ability and (A31) by the definition of conditional probability. 
Plugging equation (A31) back into equation (A29), since 
HN(g) ∼ Bin(g, αN), it follows

E(N) GN(g) 1 −
ψ2

4

􏼒 􏼓HN(g)
􏼢 􏼣

= 􏿻v0

􏽘g

k=0

􏽘

􏿻t∈Wk

Π􏿻tN 1 −
ψ2

4

􏼒 􏼓

αN

􏼒 􏼓k

(1 − αN)
g− k(1, 1, 0)T

= 􏿻v0 αN 1 −
ψ2

4

􏼒 􏼓

ΠBF
N + (1 − αN)ΠWF

N

􏼒 􏼓g

(1, 1, 0)T

= 􏿻v0(Πmid
N )

g(1, 1, 0)T,

(A32)

where the second last equality follows from distributing k terms of 

αN and g − k terms of 1 − αN into the product Π􏿻tN.                      □

Finally, we compute the right-hand side of (33). The calculations 
for Lemma A3 are available at https://github.com/ 
diamantidisdimitris/Bursts-of-coalescence in the file titled 
Lemma 4 mixed moment print and can be reproduced in the 
Mathematica notebook Lemma 4 mixed moment notebook, where 
Mathematica version 13.1.0 (Wolfram Research, Inc. 2022) was used.

Lemma A3 Suppose the distribution 􏿻v0 of the initial state M0 puts zero 
mass at the coalescent state ξ2 (recall 3-states Markov chain M in the 
proof of Lemma 1). For each t ∈ (0, ∞), it holds that

lim
N→∞

E(N) GN([tNθ]) 1 −
ψ2

4

􏼒 􏼓HN([tNθ ])
􏼢 􏼣

=
e− λt(ψ

2

2 −
ψ4

16), if θ ∈ (0, 1),

e− t/2e− λt(ψ
2

2 −
ψ4

16), if θ= 1.

􏼨

Proof. Let Πmid
N as in equation (34), by Lemma A2 for g = [tNθ] it fol

lows that

E(N) GN([tNθ]) 1 −
ψ2

4

􏼒 􏼓HN([tNθ])
􏼢 􏼣

= 􏿻v0(Πmid
N )

tNθ
(1, 1, 0)T. (A33)

Notice that Πmid
N is not a stochastic matrix, consider instead

􏽥Πmid
N := 1 −

λψ2

4Nθ

􏼒 􏼓− 1

Πmid
N ,

so that 􏽥Πmid
N is a stochastic matrix. For any θ ∈ (0, 1], let

A := lim
N→∞

􏽥Πmid
N =

1 0 0
1 0 0
0 0 1

⎛

⎝

⎞

⎠,

and

B(θ) := lim
N→∞

Nθ(􏽥Πmid
N − A) (A34)

=

λψ4

8 −
λψ2

2
λψ2

4 −
λψ4

16
λψ2

4 −
λψ4

16

0 0 0

0 0 0

⎛

⎜
⎝

⎞

⎟
⎠, if 0 < θ < 1,

λψ4

8 −
λψ2

2 − 1 −
λψ4

16 +
λψ2

4 +
1
2 −

λψ4

16 +
λψ2

4 +
1
2

− 1 1
2

1
2

0 0 0

⎛

⎜
⎝

⎞

⎟
⎠, if θ = 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

(A35)

Furthermore, consider the matrix P := limk→∞ Ak, then P = A and 

let G(θ) :=PB(θ)P. Then for θ ∈ (0, 1), the first two rows of G(θ) are 
identical to

1
16

λψ2(ψ2 − 4), 0, −
1
16

λψ2(ψ2 − 4)
􏼒 􏼓

,

and the last one is equal to (0, 0, 0). For θ = 1, the first two rows of 

G(1) are identical to

1
8

λ(ψ2 − 4)ψ2 +
1
16
(8 − λψ2(ψ2 − 4)) − 1, 0,

1
16
(8 − λψ2(ψ2 − 4))

􏼒 􏼓

,

and the last one is equal to (0, 0, 0). Writing 􏽥Πmid
N as

􏽥Πmid
N = A+

B(θ)

Nθ + o
1

Nθ

􏼒 􏼓

, (A36)

we can apply Möhle’s Lemma (Möhle 1998a, Lemma 1) which gives

lim
N→∞

􏿻v0(􏽥Πmid
N )

tNθ
(1, 1, 0)T =

e− λt(ψ
2

4 −
ψ4

16), for θ ∈ (0, 1),

e− t/2e− λt(ψ
2

4 −
ψ4

16), for θ = 1.

􏼨

(A37)

Hence, equation (A33), through the use of equation (A37), is equal 
to

lim
N→∞

􏿻v0(Πmid
N )

tNθ
(1, 1, 0)T = lim

N→∞
􏿻v0 1 −

λψ2

4Nθ

􏼒 􏼓

􏽥Πmid
N

􏼒 􏼓tNθ

(1, 1, 0)T

= e− λ tψ2

4 lim
N→∞

􏿻v0(􏽥Πmid
N )

tNθ
(1, 1, 0)T

=
e− λt(ψ

2

2 −
ψ4

16), if θ ∈ (0, 1),

e− t/2e− λt(ψ
2

2 −
ψ4

16), if θ = 1.

􏼨

The last equality holds because 􏿻v0 = (x, 1 − x, 0) for some 
x ∈ [0, 1].                                                                                         □

Proof sketch for Remark 3
Let 􏿻G (N) = (G(N)1 , G(N)2 , . . .) with 0 ≤ G(N)1 < G(N)2 < · · · be the (random) 
indices of the generations when a big family occurs. By the defin
ition of our model, we can think of generating the random pedi
gree in a two-step procedure: First, generate 􏿻G (N) by deciding for 
each generation independently with probability αN that a big fam
ily occurs there. Then given 􏿻G (N) = 􏿻g (N) with 􏿻g (N) = (g(N)1 , g(N)2 , . . .)

fixed, generate the pedigree between generation g and g+ 1 by as
signing offspring to parents according to the “generation with big 
family” model if g ∈ {g(N)1 , g(N)2 , . . . } and according to the diploid 
Wright–Fisher model otherwise, independently for different g’s.
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Thus, P(N)(τ(N,2) > [tNθ] | 􏿻G (N) = 􏿻g (N)) can be computed by using a 
time-inhomogeneous Markov chain with the three states ξ0, ξ1 

and ξ2 from Lemma 1, as in equation (12),

P(N)(τ(N,2) > [tNθ] | 􏿻G(N) = 􏿻g(N)) = (1, 0, 0)(ΠWF
N )

g(N)1 ΠBF
N (Π

WF
N )

g(N)2 − g(N)1 − 1

ΠBF
N (Π

WF
N )

g(N)3 − g(N)2 − 1ΠBF
N · · · (Π

WF
N )

g(N)
Y(N) ([tNθ ])

− g(N)
Y(N) ([tNθ ])− 1

− 1

ΠBF
N (Π

WF
N )

[tNθ]− g(N)
Y(N) ([tNθ ]) (1, 1, 0)T,

where Y(N)(u) :=Y(N)(u; 􏿻g (N)) :=max {i : g(N)i ≤ u}.
Now 􏿻G (N)/Nθ :=(G(N)1 /Nθ, G(N)2 /Nθ, . . .) converges in distribution 

to (J1, J2, . . .) where 0 < J1 < J2 < · · · are the jump times of a 
Poisson process (Y(t))t≥0 with rate λ (and Y(t) =max {i : Ji ≤ t}).

We see from equation (8) that

ΠBF := lim
N→∞

ΠBF
N =

1 − ψ2

2
ψ2

4
ψ2

4
1 0
0 0 1

⎡

⎣

⎤

⎦.

Furthermore, for θ = 1 we obtain from equation (7) that for any 
t > 0

lim
N→∞
(ΠWF

N )
[Nt] =

e− t/2 0 1 − e− t/2

e− t/2 0 1 − e− t/2

0 0 1

⎡

⎣

⎤

⎦ = : ΠWF(t),

whereas for θ ∈ (0, 1)

lim
N→∞
(ΠWF

N )
[Nθt] =

1 0 0
1 0 0
0 0 1

⎡

⎣

⎤

⎦.

This gives for θ = 1

lim
N→∞

P(N)(τ(N,2) > [tNθ] | 􏿻G(N) = 􏿻g(N)) =d (1, 0, 0)ΠWF(J1)

ΠBFΠWF(J2 − J1)ΠBF · · ·ΠWF(JY(t) − JY(t)− 1)ΠBFΠWF(t − JY(t))(1, 1, 0)T

= e− t/2(1 − ψ2/4)Y(t).

The argument for θ ∈ (0, 1) is analogous. 
In fact, the argument above suggests that the model and the 

main result can be extended to a scenario where the limiting pro
cess (Y(t)) is not necessarily a time-homogeneous Poisson process 
as long as the construction of the pedigree conditional on the se
quence of times 􏿻G(N) = (G(N)1 , G(N)2 , . . .) is unchanged.

List of Patterns and Mendelian randomness tables
List of patterns
For Tables A1–A3, let x, y, z, w ∈ [N] represent distinct indivi
duals. Circles represent the parent(s) of these individuals. For 
any individual, two arrows pointing to the same circle indicate 

Table A1. List of patterns when the sampled genes are distributed among one or two individuals.

Pattern Name Wright–Fisher Big family

A11
1
N

1− ψ
N

A12 1 − 1
N ψ+ (1 − ψ) 1 − 1

N

( 􏼁

A22 O(N− 2) ψ2 + O(N− 2)

A23,s(x, y) (N− 1)(N− 2)
N3 ψ(1 − ψ) 1

N+ (1 − ψ)2 (N− 1)(N− 2)
N3

A23
2(N− 1)(N− 2)

N3 2ψ(1 − ψ) 2
N (1 −

2
N) + (1 − ψ)2 2(N− 1)(N− 2)

N3

A24
(N− 1)(N− 2)(N− 3)

N3 2ψ(1 − ψ) (N− 2)(N− 3)
N2 + (1 − ψ)2 (N− 1)(N− 2)(N− 3)

N3
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that the individual results from selfing. If two individuals each 
have one arrow pointing to the same circle, it means that the indi
viduals have exactly one parent in common. The third columns in 
Tables A1–A3 contain the probabilities of the patterns in a Wright– 
Fisher generation, while the last column represents a generation 
with a big family. We only keep track of terms of order O(1) and 
O(N− 1).

For example, the probabilities of the patterns A11 and A12 are 
explained as follows: In the offspring generation, an individual 
originates from the highly reproductive pair with probability ψ, 
signifying two distinct parents. Conversely, the same individual 

is not among the offspring of the highly reproductive pair with 
a probability of 1 − ψ. In this scenario, the individual comes 
from selfing with a probability of 1/N, and from two distinct par
ents with probability 1 − 1/N. Finally, the probability of pattern 
A22 is explained as follows: Each individual in the offspring gen
eration originates from the highly reproductive pair with prob
ability ψ. By independence, both individuals are offspring of the 
highly reproductive couple with probability ψ2. Note that two in
dividuals can share both their parents in various ways. However, 
in all other scenarios, the probability of such an event is of the or
der O(N− 2).

Table A2. List of patterns when the sampled genes are distributed among three individuals.

Pattern Name Wright–Fisher Big family

A32 O(N− 2) ψ3 + O(N− 2)

A33,s(z) O(N− 2) ψ2(1 − ψ)(1 − 2
N)

1
N

A33,2(z) O(N− 2) ψ2(1 − ψ)(1 − 2
N)

2
N

A33(z) O(N− 2) ψ2(1 − ψ)(1 − 2
N)(1 −

3
N)

A35,s(x) (N− 1)···(N− 4)
N5 ψ(1 − ψ)2 (N− 2)···(N− 4)

N4 + (1 − ψ)3 (N− 1)···(N− 4)
N5

A35(x, y) 2(N− 1)···(N− 4)
N5 ψ(1 − ψ)2 2(N− 2)···(N− 4)

N4 + (1 − ψ)3 2(N− 1)···(N− 4)
N5

A36
(N− 1)···(N− 5)

N5 3ψ(1 − ψ)2 (N− 2)···(N− 5)
N4 + (1 − ψ)3 (N− 1)···(N− 5)

N5
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Table A3. List of patterns when the sampled genes are distributed among four individuals.

Pattern Name Wright–Fisher Big family

A42 O(N− 2) ψ4 + O(N− 2)

A43(w) O(N− 2) ψ3(1 − ψ) 2
N (1 −

2
N)

A43,s(w) O(N− 2) ψ3(1 − ψ)(1 − 2
N)

1
N

A44(w) O(N− 2) ψ3(1 − ψ) (N− 2)(N− 3)
N2

A45,s(z, w) O(N− 2) ψ2(1 − ψ)2 (N− 2)···(N− 4)
N4

A45(z, w) O(N− 2) ψ2(1 − ψ)2 2(N− 2)(N− 3)(N− 4)
N4

A46(z, w) O(N− 2) ψ2(1 − ψ)2 (N− 2)(N− 3)(N− 4)(N− 5)
N4

A47,s(x) (N− 1)···(N− 6)
N7 ψ(1 − ψ)3 (N− 2)···(N− 6)

N6 + (1 − ψ)4 (N− 1)···(N− 6)
N7

A47(x, y) 2(N− 1)···(N− 6)
N7 ψ(1 − ψ)3 2(N− 2)···(N− 6)

N6 + (1 − ψ)4 4(N− 1)···(N− 6)
N7

A48
(N− 1)···(N− 7)

N7 4ψ(1 − ψ)3 (N− 2)···(N− 7)
N6 + (1 − ψ)4 (N− 1)···(N− 7)

N7
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Mendelian randomness tables
Tables A4–A10 contain the transition probabilities for every pair of 
states (ξ, η) ∈ S2, conditional on the patterns from Tables A1–A3. 
The derivation of the entries of Tables A4–A10 follow similarly to 
the entries of equation (A10) in the Two extremes for the sizes of big fam
ilies. For example, in Table A10, the last row of the column labeled 
A47 is explained as follows. Lineages in distinct individuals sharing 

exactly one parent have descended from different parents with 
probability 3/4. On the other hand, state ξ(4)00 consists of two distinct 
individuals, hence the pattern A47 is used in 42 = 6 ways. Finally, we 
note that in Tables A4–A10, the fractional quantities stand for events 
determined purely by Mendelian randomness (conditional on each 
pattern) whereas the integer quantities refer to combinatorial terms 
corresponding to the appropriate use of the patterns.

Table A4. Conditional probabilities given the pattern when the 
initial state is ξ(1)11 .

(ξ(1)11 , η) A11 A12

(ξ(1)11 , ξ(1)11 )
1
4 0

(ξ(1)11 , ξ(2)11 ) 0 0

(ξ(1)11 , ξ(2)10 ) 0 0

(ξ(1)11 , ξ(3)10 ) 0 0

(ξ(1)11 , ξ(2)01 ) 0 0

(ξ(1)11 , ξ(3)01 ) 0 0

(ξ(1)11 , ξ(2)00 ) 0 1
1

(ξ(1)11 , ξ(3)00 ) 0 0

(ξ(1)11 , ξ(4)00 ) 0 0

Table A5. Conditional probabilities given the pattern when the 
initial state is ξ(2)11 .

(ξ(2)11 , η ) A22 A23,s A23 A24

(ξ(2)11 , ξ(1)11 ) 0 0 0 0

(ξ(2)11 , ξ(2)11 ) 0 0 0 0

(ξ(2)11 , ξ(2)10 ) 0 0 0 0

(ξ(2)11 , ξ(3)10 ) 0 1
2 0 0

(ξ(2)11 , ξ(2)01 ) 0 0 0 0

(ξ(2)11 , ξ(3)01 ) 0 1
2 0 0

(ξ(2)11 , ξ(2)00 )
1
1 0 0 0

(ξ(2)11 , ξ(3)00 ) 0 0 1
1 0

(ξ(2)11 , ξ(4)00 ) 0 0 0 1
1

Table A6. Conditional probabilities given the pattern when the 
initial state is ξ(2)10 .

(ξ(2)10 , η) A22 A23,s A23 A24

(ξ(2)10 , ξ(1)11 ) 0 0 0 0

(ξ(2)10 , ξ(2)11 ) 0 0 0 0

(ξ(2)10 , ξ(2)10 ) 0 1
2 0 0

(ξ(2)10 , ξ(3)10 ) 0 0 0 0

(ξ(2)10 , ξ(2)01 )
1
4 0 1

4 0

(ξ(2)10 , ξ(3)01 ) 0 0 0 0

(ξ(2)10 , ξ(2)00 )
1
2 0 1

4 0

(ξ(2)10 , ξ(3)00 ) 0 1 · 11
1
2

1
1

(ξ(2)10 , ξ(4)00 ) 0 0 0 0

Table A7. Conditional probabilities given the pattern when the 
initial state is ξ(2)00 .

(ξ(2)00 , η) A22 A23,s A23 A24

(ξ(2)00 , ξ(1)11 )
1
32 0 1

64 0

(ξ(2)00 , ξ(2)11 )
1
32 0 0 0

(ξ(2)00 , ξ(2)10 )
1
8 0 1

16 0

(ξ(2)00 , ξ(3)10 ) 0 0 1
32 0

(ξ(2)00 , ξ(2)01 )
1
8 0 1

16 0

(ξ(2)00 , ξ(3)01 ) 0 0 1
32 0

(ξ(2)00 , ξ(2)00 )
1
4 2· 12 1· 3

16
1
4

(ξ(2)00 , ξ(3)00 ) 0 2· 12 1· 6
16

1
2

(ξ(2)00 , ξ(4)00 ) 0 0 0 1
4

Table A8. Conditional probabilities given the pattern when the 
initial state is ξ(3)10 .

(ξ(3)10 , η ) A32 A33,s A33,2 A33 A35,s A35 A36

(ξ(3)10 , ξ(1)11 ) 0 0 0 0 0 0 0

(ξ(3)10 , ξ(2)11 ) 0 1
4 0 0 0 0 0

(ξ(3)10 , ξ(2)10 ) 0 0 0 0 0 0 0

(ξ(3)10 , ξ(3)10 ) 0 1
4 0 0 1· 12 0 0

(ξ(3)10 , ξ(2)01 )
1
4 0 1· 18 0 0 0 0

(ξ(3)10 , ξ(3)01 ) 0 0 3· 18 1· 14 0 1· 18 0

(ξ(3)10 , ξ(2)00 )
1
2 0 2· 14 0 0 0 0

(ξ(3)10 , ξ(3)00 ) 0 2·1 3· 12 2·1 0 2· 12 0

(ξ(3)10 , ξ(4)00 ) 0 0 0 1· 12 2· 11 1· 34+2· 12
1
1

Table A9. Conditional probabilities given the pattern when the 
initial state is ξ(3)00 .

(ξ(3)00 , η ) A32 A33,s A33,2 A33 A35,s A35 A36

(ξ(3)00 , ξ(1)11 ) 1· 1
32 0 3· 1

64 0 0 0 0

(ξ(3)00 , ξ(2)11 ) 1· 1
32 0 2· 1

64 0 0 0 0

(ξ(3)00 , ξ(2)10 ) 1· 18 1· 18 2· 18+1· 1
16 1· 18 0 1· 18 0

(ξ(3)00 , ξ(3)10 ) 0 1· 18 1· 1
32+1· 1

16 1· 18 0 1· 18 0

(ξ(3)00 , ξ(2)01 ) 1· 18 1· 18 2· 1
16+1· 18 1· 18 0 1· 18 0

(ξ(3)00 , ξ(3)01 ) 0 1· 18 1· 1
32+1· 1

16 1· 18 0 1· 18 0

(ξ(3)00 , ξ(2)00 ) 1· 14 1· 12 1· 38+2· 18 1· 12 0 0 0

(ξ(3)00 , ξ(3)00 ) 0 3· 12 1· 38+2· 14 3· 12 1· 11+2· 12 1· 12+2· 12 1· 12
(ξ(3)00 , ξ(4)00 ) 0 0 0 0 2· 12 1· 38 +2· 14 1· 12
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Strengthening the convergence in Theorem 1
Remark A1 The arguments used in the proof of Theorem 1 in fact 
allow to conclude the (stronger) statement that

(FN(t,A
(N,2)))t≥0 −→

1 − ψ2

4

􏼐 􏼑Y(t− )
􏼒 􏼓

t≥0
, when θ ∈ (0, 1),

e− t/2 1 − ψ2

4

􏼐 􏼑Y(t− )
􏼒 􏼓

t≥0
, when θ=1,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(A38)

in finite-dimensional distributions.

Proof. We will only consider the case θ = 1 here, the case θ < 1 is 
similar.
Fix k ∈ N and 0 < t1 < t2 < · · · < tk. Using equation (21) for t1, . . . , tk, 
we have

lim
N→∞

E(N)
􏽘k

j=1

FN(tj, A
(N,2)) − e− tj/2 1 −

ψ2

4

􏼒 􏼓QN([tjN])
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2
⎡

⎣

⎤

⎦ = 0, (A39)

which implies as in the proof of Theorem 1 that

(FN(t1, A
(N,2)), . . . , FN(tk, A

(N,2)))

−→ e− t1/2 1 −
ψ2

4

􏼒 􏼓Y(t1)

, . . . , e− tk/2 1 −
ψ2

4

􏼒 􏼓Y(tk)
􏼠 􏼡

=
d e− t1/2 1 −

ψ2

4

􏼒 􏼓Y(t1 − )

, . . . , e− tk/2 1 −
ψ2

4

􏼒 􏼓Y(tk − )
􏼠 􏼡

in distribution. This shows convergence of finite-dimensional dis
tributions.                                                                                        □

Furthermore, we conjecture that we have weak convergence 
in the space of left-continuous functions with right limits, 
equipped with the Skorohod topology, but we do not pursue this 
here.

Editor: K. Jain

Table A10. Conditional probabilities given the pattern when the initial state is ξ(4)00 .

(ξ(4)00 , η) A42 A43 A43,s A44 A45 A45,s A46 A47,s A47 A48

(ξ(4)00 , ξ(1)11 ) 1· 1
32 2· 1

64 0 0 0 0 0 0 0 0

(ξ(4)00 , ξ(2)11 ) 1· 1
32 2· 1

64 0 0 2· 1
16 0 0 0 0 0

(ξ(4)00 , ξ(2)10 ) 1· 18 2· 1
16 2· 1

16 2· 1
16 0 0 0 0 0 0

(ξ(4)00 , ξ(3)10 ) 0 2· 1
32 2· 1

16 2· 1
16 1· 1

16+1· 3
16 1· 14 1· 14 0 1· 18 0

(ξ(4)00 , ξ(2)01 ) 1· 18 2· 1
16 2· 1

16 2· 1
16 0 0 0 0 0 0

(ξ(4)00 , ξ(3)01 ) 0 2· 1
32 2· 1

16 2· 1
16 1· 1

16+1· 3
16 1· 14 1· 14 0 1· 18 0

(ξ(4)00 , ξ(2)00 ) 1· 14 2· 1
16 0 0 1· 18 0 0 0 0 0

(ξ(4)00 , ξ(3)00 ) 0 2· 1
16 4· 48 4· 12 1· 8

16 2· 12 4· 12 0 4· 14 0

(ξ(4)00 , ξ(4)00 ) 0 0 0 0 6· 38 6· 12 6· 12 4· 11 6· 34 1· 11
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